
Designing and implementing

ethernet networks

Joachim Tingvold

ALICE HLT, CERN

Bergen University College

mailto:joachim@tingvold.com
http://aliceinfo.cern.ch
http://www.hib.no

Abstract

Implementing and designing ethernet networks requires thought to several

aspects. One would like to build a stable, scaleable, and fully redundant

network, as possible, while keeping downtime to a minimum.

Contents

List of Figures vii

List of Tables viii

List of Listings ix

Glossary x

1 Summary 1

2 Introduction 2

2.1 People . 2

2.2 Company . 3

2.2.1 ALICE . 3

2.2.2 HLT . 3

2.3 The problem . 3

2.4 Current setup . 4

2.5 The company’s main goals . 5

3 Task definition 6

3.1 Requirements . 6

3.2 Conditions . 7

3.3 Hardware & software . 7

3.3.1 Switches . 7

3.3.1.1 HP ProCurve 3400cl (J4905A) 7

3.3.1.2 HP ProCurve 3400cl (J4906A) 8

3.3.1.3 HP ProCurve 3500yl-48G (J8693A) 8

iii

CONTENTS

3.3.1.4 Netgear FSM726 v2 . 8

3.3.2 Software . 8

3.4 Purchase . 8

3.5 Timeframe . 8

3.5.1 Milestones . 9

3.5.1.1 Planning . 9

3.5.1.2 Physical . 10

3.5.1.3 Logical . 10

3.5.1.4 Monitoring . 10

3.5.1.5 Documentation . 10

3.6 Risks . 10

3.7 Main goals . 12

3.7.1 Physical movement . 12

3.7.2 Redundancy & availability . 12

3.7.3 IP-scheme . 13

3.7.4 Security . 13

3.7.5 Separation . 13

3.7.6 Avoid loops . 13

3.7.7 Network-services . 13

4 Design 15

4.1 Physical . 15

4.1.1 Switches . 15

4.1.2 Cables . 15

4.1.3 Servers . 19

4.2 Logical . 19

4.2.1 IP-scheme . 21

4.2.2 VLANs . 23

4.3 Network-services . 24

4.3.1 DNS . 24

4.3.2 DHCP . 24

4.3.3 Gateway . 24

iv

CONTENTS

5 Implementation 25

5.1 Physical . 25

5.2 Switch configuration . 26

5.2.1 Initial config . 26

5.2.2 Remove temporary switches . 29

5.2.3 Advanced switch config . 30

5.2.3.1 STP . 30

5.2.3.2 Routing . 30

5.2.3.3 OSPF . 31

5.2.3.4 VRRP . 31

5.2.3.5 ip helper-address . 33

5.2.3.6 ip forward-protocol . 34

5.2.4 Final switch-configs . 35

5.3 DNS & DHCP . 35

5.3.1 Preparation . 35

5.3.2 Final config . 36

5.4 Gateway . 36

5.4.1 Initial network-config . 37

5.4.2 CARP . 38

5.4.3 PF . 39

5.5 The switchover . 43

6 Testing 44

6.1 Network-connectivity . 44

6.2 Network-services . 45

6.2.1 DHCP . 45

6.2.2 DNS . 45

6.2.3 Gateways . 46

6.3 Redundancy . 46

6.3.1 Edge-switches . 46

6.3.2 Core-swithces & gateways . 46

6.3.3 Network-services . 46

v

CONTENTS

7 Conclusion 48

7.1 Fulfilled requirements . 48

7.2 Limitations . 48

7.3 Improvements . 48

7.4 Progress according to plan . 49

References 50

A Scripts & config 52

vi

List of Figures

3.1 Milestones . 9

4.1 Network layout . 20

vii

List of Tables

3.1 Risks . 12

4.1 Patchlist . 19

4.2 Subnets . 21

4.3 ”Ethernet”-subnets . 21

4.4 Reserved IP-addresses . 22

4.5 VLANs . 23

viii

List of Listings

5.1 Switch CSV-file . 26

5.2 Initial edge-switch config-template . 27

5.3 Bash-script to generate configs . 28

5.4 Initial management-switch config-template 28

5.5 STP configuration on edge-switches . 30

5.6 Turn on routing . 30

5.7 Configuring OSPF on sw-core1 . 31

5.8 Configuring VRRP on sw-core1 . 32

5.9 Configuring broadcast-forwards . 34

5.10 Extracting information from old LDAP-database 35

5.11 Basic network-config on gateways . 37

5.12 CARP-configuration . 38

5.13 PF-setup . 39

5.14 PF-configuration . 40

5.15 PF-logging . 43

6.1 Verifying network-connectivity . 44

6.2 Verifying working DHCP . 45

6.3 Verifying working DNS . 45

A.1 Generate DHCP and DNS configuration-files 52

A.2 Current sw-core1 config . 60

A.3 Current sw-core0 config . 67

A.4 Current sw-core2 config . 74

A.5 Current sw-mgmt config . 81

ix

Glossary

ALICE ALICE (A Large Ion Collider Exper-

iment) is one of the six detector ex-

periments at the Large Hadron Col-

lider at CERN. (1)

AS Within the Internet, an Autonomous

System is a collection of connected

Internet Protocol (IP) routing pre-

fixes under the control of one or more

network operators that presents a

common, clearly defined routing pol-

icy to the Internet. (2)

BMC The baseboard management con-

troller is the intelligence in the IPMI

architecture. It is a specialized mi-

crocontroller embedded on the moth-

erboard of a computer, generally a

server. The BMC manages the in-

terface between system management

software and platform hardware. (3)

Broadcast radiation Broadcast radiation is

the accumulation of broadcast and

multicast traffic on a computer net-

work. Extreme amounts of broadcast

traffic constitute a broadcast storm.

A broadcast storm can consume suf-

ficient network resources so as to ren-

der the network unable to transport

normal traffic. (4)

CARP The Common Address Redundancy

Protocol or CARP is a protocol

which allows multiple hosts on the

same local network to share a set of

IP addresses. Its primary purpose is

to provide failover redundancy, espe-

cially when used with firewalls and

routers. (5) (6)

CERN The acronym CERN originally stood,

in French, for Conseil Européen pour

la Recherche Nucléaire (European

Council for Nuclear Research), which

was a provisional council for setting

up the laboratory, established by 11

European governments in 1952. The

acronym was retained for the new

laboratory after the provisional coun-

cil was dissolved, even though the

name changed to the current Organi-

sation Européenne pour la Recherche

Nucléaire (European Organization

for Nuclear Research) in 1954. (7)

CHARM The CHARM (Computer-Health-

And-Remote-Monitoring) card is

plugged into the PCI-bus of the host-

computer. It is a small single-board

computer running Linux as operation

system that can monitor and control

the host computer. Connections to

the CHARM card are possible via its

own network for full remote control

of the host system. (8) (9)

DHCP The Dynamic Host Configuration

Protocol (DHCP) is an automatic

configuration protocol used on IP

networks. Computers that are con-

nected to IP networks must be con-

figured before they can communicate

with other computers on the net-

work. DHCP allows a computer to

be configured automatically, elimi-

nating the need for intervention by

a network administrator. It also pro-

vides a central database for keeping

track of computers that have been

connected to the network. This pre-

vents two computers from acciden-

x

GLOSSARY

tally being configured with the same

IP address. (10)

DNS The Domain Name System (DNS) is

a hierarchical naming system built on

a distributed database for computers,

services, or any resource connected

to the Internet or a private network.

Most importantly, it translates do-

main names (or hostnames) into the

numerical identifiers associated with

networking equipment. (11)

EtherLock EtherLock is a closed loop moni-

toring system, similar in function to

a home alarm system. Just as a

home alarm sounds when a door or

window is opened, connecting or dis-

connecting any network asset (work-

station, notebook, printer, server,

hub/switch) is detected in real time.

(12)

Gateway A gateway is a network point that

acts as an entrance to another net-

work. On an IP network, clients

should automatically send IP pack-

ets with a destination outside a given

subnet mask to a network gateway.

A gateway is an essential feature of

most routers, although other devices

(such as any PC or server) can func-

tion as a gateway. (13)

GPN General Purpose Network, a network

providing Internet access for comput-

ers at CERN.

HLT High Level Trigger. (8)

InfiniBand InfiniBand is a switched fabric

communications link used in high-

performance computing and enter-

prise data centers. Its features in-

clude high throughput, low latency,

quality of service and failover, and

it is designed to be scalable. The

InfiniBand architecture specification

defines a connection between proces-

sor nodes and high performance I/O

nodes such as storage devices. (14)

IP-address An Internet Protocol address (IP

address) is a numerical label as-

signed to each device (e.g., computer,

printer) participating in a computer

network that uses the Internet Pro-

tocol for communication. (15)

IPMI The Intelligent Platform Manage-

ment Interface (IPMI) is a standard-

ized computer system interface used

by system administrators to manage

a computer system and monitor its

operation. (16)

ISC Internet Systems Consortium, Inc.,

also known as ISC, is a Delaware-

registered, public benefit non-profit

corporation dedicated to supporting

the infrastructure of the universal

connected self-organizing Internet by

developing and maintaining core pro-

duction quality software, protocols,

and operations. ISC is the developer

of several key Internet technologies

that enable the global Internet; such

as BIND and ISC DHCP. (17)

MAC-address A Media Access Control ad-

dress (MAC address) is a unique

identifier assigned to network in-

terfaces for communications on the

physical network segment. MAC ad-

dresses are used for numerous net-

work technologies and most IEEE

802 network technologies including

Ethernet. Logically, MAC addresses

are used in the Media Access Control

protocol sub-layer of the OSI refer-

ence model. (18)

NAT In computer networking, network ad-

dress translation (NAT) is the pro-

cess of modifying IP address infor-

mation in IP packet headers while in

xi

GLOSSARY

transit across a traffic routing device.

It is common to hide an entire IP

address space, usually consisting of

private IP addresses, behind a sin-

gle IP address (or in some cases a

small group of IP addresses) in an-

other (usually public) address space.

To avoid ambiguity in the handling of

returned packets a one-to-many NAT

must alter higher level information

such as TCP/UDP ports in outgo-

ing communications and must main-

tain a translation table so that re-

turn packets can be correctly trans-

lated back. RFC 2663 uses the

term NAPT (network address and

port translation). Other names for

this type of NAT include PAT (port

address translation), IP masquerad-

ing, NAT Overload and many-to-one

NAT. Since this is the most common

type of NAT it is often referred to

simply as NAT. (19)

Network loop A Switching loop or Bridge loop

occurs in computer networks when

there is more than one Layer 2 (OSI

model) path between two endpoints

(e.g. multiple connections between

two network switches or two ports on

the same switch connected to each

other). The loop creates broadcast

radiation as broadcasts and multi-

casts are forwarded by switches out

every port, the switch or switches will

repeatedly rebroadcast the broadcast

messages flooding the network. Since

the Layer 2 header does not support

a time to live (TTL) value, if a frame

is sent into a looped topology, it can

loop forever. (20)

Node A node is any device connected to

a computer network. Nodes can

be computers, personal digital assis-

tants (PDAs), cell phones, or various

other network appliances. (21)

OSI model The Open Systems Interconnection

model (OSI model) was a product

of the Open Systems Interconnec-

tion effort at the International Or-

ganization for Standardization. It is

a way of sub-dividing a communica-

tions system into smaller parts called

layers. Similar communication func-

tions are grouped into logical lay-

ers. A layer provides services to its

upper layer while receiving services

from the layer below. On each layer,

an instance provides service to the

instances at the layer above and re-

quests service from the layer below.

(22)

OSPF Open Shortest Path First (OSPF) is

an adaptive routing protocol for In-

ternet Protocol networks. It uses a

link state routing algorithm and falls

into the group of interior routing pro-

tocols, operating within a single au-

tonomous system. (23)

PF PF (Packet Filter, also written pf) is

a BSD licensed stateful packet filter,

a central piece of software for fire-

walling. (5) (24)

Rack unit A rack unit or U (less commonly

RU) is a unit of measure used to

describe the height of equipment in-

tended for mounting in a rack. One

rack unit is 1.75 inches (44.45 mm)

high. (25)

Rooted When someone uses a rootkit, or

the like, to gain root-access to a

Linux/Unix-based OS.

Rootkit A rootkit is software that enables

continued privileged access to a com-

puter while actively hiding its pres-

ence from administrators by subvert-

ing standard operating system func-

tionality or other applications. The

xii

GLOSSARY

term rootkit has negative connota-

tions through its association with

malware. (26)

STP The Spanning Tree Protocol (STP)

is a network protocol that ensures

a loop-free topology for any bridged

Ethernet local area network. The

basic function of STP is to prevent

bridge loops and ensuing broadcast

radiation. Spanning tree also allows

a network design to include spare (re-

dundant) links to provide automatic

backup paths if an active link fails,

without the danger of bridge loops,

or the need for manual enabling/dis-

abling of these backup links. (27)

Subnet A subnetwork, or subnet, is a logi-

cally visible subdivision of an IP net-

work. The practice of dividing a net-

work into subnetworks is called sub-

netting. All computers that belong

to a subnet are addressed with a com-

mon, identical, most-significant bit-

group in their IP address. This re-

sults in the logical division of an IP

address into two fields, a network or

routing prefix and the rest field. The

rest field is a specific identifier for

the computer or the network inter-

face. (28)

Throughput In communication networks, such

as Ethernet or packet radio, through-

put or network throughput is the av-

erage rate of successful message de-

livery over a communication chan-

nel. This data may be delivered over

a physical or logical link, or pass

through a certain network node. The

throughput is usually measured in

bits per second (bit/s or bps), and

sometimes in data packets per second

or data packets per time slot. (29)

Trunk Link aggregation or IEEE 802.1AX-

2008 is a computer networking

term which describes using multi-

ple network cables/ports in paral-

lel to increase the link speed be-

yond the limits of any one single

cable or port, and to increase the

redundancy for higher availability.

Link aggregation is often abbreviated

LAG. Other terms include trunk-

ing, link bundling, Ethernet/net-

work/NIC bonding, NIC teaming,

port channel, EtherChannel, Multi-

link trunking (MLT), Smartgroup

(from ZTE), and EtherTrunk (from

Huawei). (30)

TTL Time to live (TTL) is mechanism

that limits the lifespan of data in a

computer or network. TTL may be

implemented as a counter or times-

tamp attached to or embedded in

the data. Once the prescribed event

count or timespan has elapsed, data

is discarded. In computer network-

ing, TTL prevents a data packet from

circulating indefinitely. (31)

VLAN A virtual local area network, virtual

LAN or VLAN, is a group of hosts

with a common set of requirements

that communicate as if they were

attached to the same broadcast do-

main, regardless of their physical lo-

cation. A VLAN has the same at-

tributes as a physical local area net-

work (LAN), but it allows for end

stations to be grouped together even

if they are not located on the same

network switch. LAN membership

can be configured through software

instead of physically relocating de-

vices or connections. (32)

VRRP Virtual Router Redundancy Proto-

col (VRRP) is a non-proprietary re-

dundancy protocol described in RFC

xiii

GLOSSARY

3768 designed to increase the avail-

ability of the default gateway servic-

ing hosts on the same subnet. This

increased reliability is achieved by

advertising a virtual router (an ab-

stract representation of master and

backup routers acting as a group) as

a default gateway to the host(s) in-

stead of one physical router. (33)

xiv

1

Summary

The project is about redesigning a ethernet network in a computer-cluster with around

230-250 nodes, at ALICE HLT, which is an experiment at CERN. The first thing

we’re going to do, is to look at their current setup. We’re then going to define the

requirements and goals for the new network, before heading on to the actual design.

Here we’ll go through how the new IP-scheme is going to be, how the network-layout is

going to be, and how network-services is going to be implemented. After that, we’ll go

through the configuration of the switches and servers in the new network. We’re also

going to do some testing of the new network, to see that it’s working as intended.

1

2

Introduction

My project is about reconstructing a network in a high-performance computing cluster,

consisting of about 230-250 nodes. Rip it apart, design it from scratch, and implement

it. In this thesis, I’ll be talking about the current setup and what the problem is. We’ll

investigate what requirements the new network has, and how I plan to implement it.

2.1 People

There are a few people worth mentioning, that was involved in this project, one way

or the other, both directly and in-directly. In no specific order of preference;

- Hege Erdal (Bergen University College), my advisor.

- H̊avard Helstrup (Bergen University College), my team-leader at CERN.

- Olav Smørholm, system administrator at CERN.

- Pierre Zelnicek, system administrator at CERN.

- Øystein Haaland, system administrator at CERN.

- Torsten Alt, technical coordinator at CERN.

- Artur Szostak, physicist/technical coordinator at CERN.

- Camilo Lara, software engineer at CERN.

- Timo Breitner, physicist/software engineer at CERN.

2

2.2 Company

- Timm Steinbeck, software engineer at CERN.

- Jochen Thaeder, system administrator at CERN.

- Volker Lindenstruth, my group-leader at CERN.

2.2 Company

The project has been carried out at CERN - more specifically ALICE HLT, which is

where I work. CERN is an international organization whose purpose is to operate the

worlds largest particle physics laboratory. It’s situated on the border between France

and Switzerland, near Geneva. It was established in 1954, and currently has twenty

European member states.

2.2.1 ALICE

ALICE is one of the largest experiments in the world devoted to research in the physics

of matter at an infinitely small scale.

2.2.2 HLT

HLT is a part of the ALICE-experiment. It combines and processes all the information

from all the major detectors of ALICE in a large, high-performance computer cluster.

It’s task is to select the relevant part of the huge amount of incoming data. This high-

performance cluster consists of several hundred servers, which is connected together

with two types of network; ethernet and InfiniBand.

2.3 The problem

A lot of the work on, and around, ALICE has been on-going since the 90’s. There was

a lot of decisions made back then, which unfortunately, in some cases, has been kept

that way till this very day. Of course, this is not always a bad thing; if it works, don’t

fix it. However, some things needs to be regularly maintained and updated. One of

these things are computer networks. The fundamental concepts of ethernet networks

hasn’t changed, but other aspects has. Many of the choices that the current network is

based upon, is no longer valid. This is something that I’ll discuss in the next section,

3

2. INTRODUCTION

one of which are the root-cause to one of their biggest problems; IP-exhaustion. Every

time they needed available IP-addresses, they had to spend days to find them - literally.

The other problem they have, is that there is no real redundancy for critical parts of

the network (DHCP, DNS, gateways, etc).

2.4 Current setup

The current setup is really simple. The switches has been configured with an IP-

address (for management) on it’s default VLAN, and that’s pretty much it - so it’s

literally plug-and-play. Their entire network is the same subnet, 10.162.0.0/16. One

should think that 210 (65 536) IP-addresses would be enough for a cluster consisting of

around 230-250 nodes. Well, not in this case. The thing is, when the network first was

planned way back, it was by someone with electronics-background, who came up with

the idea of using bit-flipping. An IPv4-address consists of 32 bits (or 4 bytes), and is

often presented in dot-decimal notation, which consists of four decimal numbers, each

ranging from 0 to 255, separated by dots - for example 10.162.11.211. Each of the four

parts represents a group of 8 bits (1 byte), and is referred to as an octet. The binary

representation of 10.162.11.211 would be 00001010.10100020.00001011.11010011. Go-

ing back to the bit-flipping, one could clearly see that it could be useful in some cases.

The nodes in the HLT-cluster is distributed amongst several rows of racks, over two

different floors. What they then did, was to map all the bits to the different rows and

racks, so that each two rack unit in the racks, got it’s own IP-address. By doing this,

you could, by looking at the binary form of an IP-address, know exactly where the

node using that IP would be located. Going the other way, if you wanted to insert a

new node into a rack, you could easily find out what IP-address it should have, based

on it’s location in that specific rack.

There was nothing wrong with this design back then - to be honest, it seemed to

be a nice system. However, as time changed, they now have servers consuming 2 rack

units, but with 4 nodes in it, and each node also has BMC, which requires it’s own

IP-address. You now suddenly have 4 nodes requiring 8 IP-addresses, whereas you only

had 1 node requiring 1 IP-address before, which kind of breaks the entire design. The

real problem, though, is that the LDAP-database they use for DHCP and DNS, has

pre-reserved all the IP-addresses that was used for the bit-flipping in such a way that

4

2.5 The company’s main goals

it was impossible to determine if an IP-address was in use or not (when they had 1

node per 2 rack units, this wasn’t a problem, as they could just follow the bit-flipping

system without caring about if it was in use or not). Thus, each time they needed free

IP-addresses, they spent loads of time finding free IP-addresses.

The current setup doesn’t have any specific redundancy at all (except that some of

the switches has trunks consisting of two cables), and all the network-services (including

the default gateway) only has some degree of redundancy, of which all has to be done

manually. So, if a gateway goes down, the cluster is unreachable externally - you have to

physically be present in the cluster, shut down the gateway, and start up the secondary

gateway. Not ideal at all.

All the switches are located in one place, and is the cause of a huge cable-mess,

which makes it really hard to debug errors – at least if you have to find out where

a specific cable is connected. There is also a lot of old mess laying around, such as

intermediate home-switches (that is, small 8-port switches) that are interconnected

and daisy-chained.

2.5 The company’s main goals

ALICE want’s a network that is reliable, redundant, and more adaptable for changes

and future growth, than what the current setup has.

5

3

Task definition

Before we can start planning the new design, we need to plan the planning, so to speak.

We need to figure out the requirements that ALICE HLT has for the new network, and

what conditions applies. We also have limited time, so we need to plan ahead - set

milestones with deadlines, which we have to follow. There’s also a lot of risks involved,

which need to be thought of beforehand, so that we don’t do anything stupid. I also

want to make a list of our main goals, which is going to be a bit more technical then

the requirements and goals that the company has.

3.1 Requirements

The requirements to the new network, as requested from ALICE HLT, was discussed,

and agreed upon, during a yearly meeting early december 2010.

- ”Automatic” redundancy. There should be no need for human intervention to

ensure this redundancy, and should only be required for critical services, such

as DHCP, DNS, gateways and core-switches. (Redundancy in other parts of the

network and/or system is of course a good thing, but is not a requirement, and

should not take the focus away from the critical services)

- Physical restructuring. There are too much cables around the switches, which

should be cleaned up. Moving the switches to different racks is no requirement,

as long as it becomes easier to troubleshoot cable-errors.

6

3.2 Conditions

- New IP-scheme. It shouldn’t take forever to find free IP-addresses. No specific

requirements as to how it’s done, as long as it’s not the way it is today.

- Separation. A strong wish to physically seperate the two parts of the cluster,

production and development, in such a way that they cannot interfere with each

other.

- Security. The cluster has been rooted more than once, which they want to avoid,

if possible.

- Monitoring. There is a wish for improved monitoring of the network, as this is

lacking in the current setup.

- Documentation. Almost no documentation done of the current setup. This should

be done for the new setup.

3.2 Conditions

The restructuring should be done by using as much as possible of the current hardware

& software we currently have. The restructuring should also be completed in time, or

as a last-resort, be able to revert to the old setup quick, as it must be fully operational

again by mid-march.

3.3 Hardware & software

We currently have around 230-250 nodes, spread across two floors, CR2 and CR3. Each

floor has three lines of racks (X, Y, Z), each having different numbers of racks (from

10 to 17 racks). We only use 4 of the racks in CR3, whilst almost all racks are in use

in CR2.

3.3.1 Switches

We have 4 different kinds of switches in the cluster.

3.3.1.1 HP ProCurve 3400cl (J4905A)

We have 1 of these, acting as our GPN-switch. It’s a 24-port Gbps-switch (34), with a

two-port 10GE fibre-module (35) with one 10GE X2-SC LR transceiver (36).

7

3. TASK DEFINITION

3.3.1.2 HP ProCurve 3400cl (J4906A)

We have 4 of these, acting as our edge and/or core-switches in the current setup. It’s

a 48-port Gbps-switch (37).

3.3.1.3 HP ProCurve 3500yl-48G (J8693A)

We have 22 of these, acting as our edge and/or core-switches in the current setup. It’s

a 48-port Gbps-switch with PoE-support (38).

3.3.1.4 Netgear FSM726 v2

We have 39 of these, acting as our edge-switches for management (IPMI, CHARM,

BMC). It’s a 26-port switch, where 24 are FastEthernet (100Mbps), and 2 Gbps-uplinks

(39).

3.3.2 Software

Current setup uses patched versions of ISCs DHCP and BIND, both with an LDAP-

backend. Only halfway redundancy, since secondary servers has to be started manually.

LDAP is ”redundant” in the way that it’s database is dumped with a cronjob, and then

manually copied over to the secondary server, imported, and then the secondary server

is ready. The gateways is running Ubuntu, using iptables to NAT the public IP to the

internal network.

3.4 Purchase

We need to purchase power-cables to the switches, so that we have the opportunity to

move them around in the cluster. These power-cables are somewhat special, since the

plug that’s plugged into the switches, is a C15. Since the racks have C14-outlets, we

need C14 to C15 cables. We also need to buy premium license (40) for the core-switches,

which will enable us to use OSPF and VRRP.

3.5 Timeframe

Since the cluster is gathering data from the LHC, which is in use almost 24/7, there

usually isn’t much time to do changes that requires downtime. Doing all the above

8

3.5 Timeframe

mentioned changes, isn’t something that is done within a weekend, and hence this isn’t

something we normally can do. However, from the start of december 2010, till mid-

march 2011, the LHC is being shut down for a long, technical break, which leaves us

with a golden opportunity to make the desired changes. Not all changes has to be done

before the LHC starts again (such as monitoring, documentation, etc).

3.5.1 Milestones

I’ve divided the project into several subtasks, each with it’s own milestone and dead-

line. They are to be completed in chronological order, since they very much depend on

each other.

2010 2011

Nov Dec Jan Feb Mar Apr May Jun Jul

Planning

Physical

Logical

Monitoring

Documentation

Figure 3.1: Milestones - Gantt-diagram showing the milestones of the project.

3.5.1.1 Planning

By the end of december 2010, all the fundamental planning of the network should be

done. This includes the plans of how the physical intervention is to be done, and also

how the logical setup of the network roughly is going to be. The latter is important to

get a better understanding of how to physically place network equipment. Things that

we need to buy for the next milestones should be known by the end of december, so

that we can order it.

9

3. TASK DEFINITION

3.5.1.2 Physical

During the start of january, physical intervention can be started. At this point the

logical structure of the network should be ready, and hence also a physical structure.

Switches and cables is to be moved during this timeframe. Old hardware (both switches

and cables) that isn’t needed, should also be cleaned up.

3.5.1.3 Logical

Once the physical structure is done, we can configure the basic configuration of the

switches on a logical level. This includes VLANs, routing, hostnames, IP-addresses,

username/passwords, etc. During this period, central network-services should also be

configured and set up – mainly DHCP, DNS and gateway servers. Since the LHC is

to be commissioned by middle of march, the production-part of the network should be

fully operational by end of february/start of march.

3.5.1.4 Monitoring

Once the network is more or less fully operational, we can start to implement monitoring

tools. This is to get a better overview over the performance of the network, and to

discover (and correct) flaws, potential bottlenecks, and errors.

3.5.1.5 Documentation

When monitoring is in place, and all other aspects of the network is done, the documentation-

process can start. Documentation should be written ”along-the-road”, but should be

combined into a complete documentation. A lot has probably also changed since it was

written down, so it needs to be updated.

3.6 Risks

When doing such a large intervention as this, there are lots of things that can go wrong.

Since we’re basically pulling the plug on the network, and then building it from scratch,

it can go wrong on both the logical and physical layer of the network, and you can also

stumble upon weird software and/or hardware bugs. There are also other factors that

10

3.6 Risks

can be an issue. I’ll try to list most of them, and also give an estimation if they are

risks that needs to be taken seriously or not.

Risk Probability
vs. severity

Consequence Comment

Don’t finish in
time

10% / High Can’t join technical &
physics-runs. Others
might have to wait for
us to be finished.

This should not hap-
pen. Have fallback-
solution ready.

Cables break,
physical
connectivity-
issues

40% / Medium Machines and/or
switches loses connec-
tivity.

We have enough ca-
bles and patch-panels,
so this is not an issue.

Switches/NICs
fails

5% / High Servers cannot com-
municate with the rest
of the network.

We have spare
switches and NICs, so
this is not an issue.

Unforeseen re-
quirements

30% / Medium Can’t proceed.
Progress stops.

Hard to foresee every-
thing in such a compli-
cated setup as this.

Software,
incompatibili-
ties, bugs

10% / Medium Can cause unwanted
things to happen.
Things might not
work as expected,
and can cause things
to take long time to
figure out.

Not very much likely
to happen, and not
much we can prepare
for.

Sub-optimal
configuration

30% / Medium Things doesn’t work as
expected. Bad perfor-
mance.

Issues can take long
time to figure out if
one is not 100% famil-
iar with how the given
feature is working.

11

3. TASK DEFINITION

Human error 80% / High One can forget to
do critical things.
One can misconfigure
things, which can
make things take
longer time. One
can do things that
has no effect at that
point, but might yield
unwanted results at a
later time.

Cannot be avoided, as
something is bound to
be configured wrong
in such a complicated
setup. It shouldn’t
pose any risk towards
not being able to fin-
ish the project, but can
give bumps along the
road.

Table 3.1: Risks - A list of the risks for the project.

3.7 Main goals

We have a few main goals, some of which the company has put forth. However, we’ve

added some technical aspects to them, and this has also led to creation of additional

goals.

3.7.1 Physical movement

The first thing we want to do, is to get rid of the centralized switch-placement. Instead

of having all the switches in one place, we want to distribute them into the racks,

and connect the servers directly to the switches (thus removing a source of error – the

extra patching). This distribution also reduces the amount of cables needed at the

core-switches.

3.7.2 Redundancy & availability

In addition to spread out the switches, we also want to increase the number of uplinks

between all of the switches, and even more between the core-switches. This is both to

ensure high bandwidth, but also to make sure we have enough redundancy; we should

be able to lose any given cable, without loosing connectivity. Redundant paths is also

something we want; we should be able to lose any given core-switch, without having

noticeable downtime. We’re also going to install two new gateways, which will be

12

3.7 Main goals

fully redundant (which isn’t the case with the current gateways – they require manual

intervention to be able to ”failover”).

3.7.3 IP-scheme

The current IP-scheme was poorly designed. It had a logic system that relied on bit-

flipping. A complete re-do of the IP-scheme is wanted. Divide it up into subnets of

suitable sizes (but still allow for future growth), and have a subnet for each kind of

server/service.

3.7.4 Security

Security is also a concern – the cluster has previously, on several occasions, been rooted.

This is partly caused by bad network-security (or rather, the lack of it), and partly by

outdated, and poorly configured, Linux-installations. This is something we’re going

to fix. Updating the Linux-installations, using more secure gateways (OpenBSD), and

generally limit the connections to the outside world.

3.7.5 Separation

Since the cluster consists of different ”sections”; we have a production-cluster, development-

cluster, infrastructure-machines, head-nodes, etc. While the cluster is in a running

state, the production-cluster should be as isolated from the rest of the cluster as possi-

ble. This is to ensure that something, or someone, don’t break things in the production-

cluster while we’re running – which is known to happen with the current setup.

3.7.6 Avoid loops

Loops has occurred in the network several times. We want to configure STP properly

on all the switches, and ensure that it’s working as intended.

3.7.7 Network-services

The current setup relies heavily on LDAP – users, DHCP, DNS, basically everything,

is stored in the LDAP-database. This is fine, however, the learning-curve for LDAP

is rather steep, so we’re moving away from this. We’re going to use move towards

flat-files, as this simplifies things a lot, and we don’t have to rely on yet another service

13

3. TASK DEFINITION

that can fail. One less thing to maintain as well. We also want to set up proper DNS-

and DHCP-services, together with the already mentioned redundant gateways.

14

4

Design

During this chapter, I’m going to describe the design of the network – in other words,

this is the plan that the implementation-phase is going to be based upon. We can

divide it into three parts; logical, physical and network-services.

4.1 Physical

There is some physical work to be done. To make things easier during implementation

of new logical layout, we’re going to do the physical changes first.

4.1.1 Switches

The switches are currently located in one place. We want to move the switches out to

the different racks, so that 2 racks share 1 switch. This way we only need 4 uplink-

cables to the core-switches. We’re also going to have a lot of spacing in-between the

core-switches, so that cable-management and troubleshooting becomes easy. We’re

going to use all 22 of the 3500yl-switches, and one of the 3400cl-48 switches, as our

edge- and core-switches. The Netgear-switches is going to be used for management

(IPMI, CHARM, BMC), just as in the old setup. The 3400cl-24 is still being used as

our GPN-switch.

4.1.2 Cables

There are lots of cables. This is due to the fact that all switches are placed at the

same place. To fix this, we are going to move the switches out in the different racks.

15

4. DESIGN

2 racks is going to share 1 switch. That 1 switch is going to have 4 uplinks to the

core switches (3, in a trunk, to one, and the last one in another - this is to have full

redundancy should a core-switch go down). This change is going to reduce the number

of needed cables by a lot, going from around 2100 patch-cables (21 switches ∗ 48 ports ∗
1.5 (since some patch-cables was connected through some etherlock-stuff)), to around

120 (18 edge-switches ∗ 4 uplinks + 4 core-switches ∗ 8 uplinks + 8 uplinks from

infrastructure-switch). That’s over 94% reduction of cables, which is going to ease up

cable-troubleshooting by far.

Each core-switch is going to be interconnected with 8 uplinks, both to avoid bot-

tlenecks, and to get redundancy, should cables fail. Each core-switch is going to be

connected to both the two other cores. The core management-switch is being con-

nected to the three cores with 2 uplinks, and the infrastructure-switch is getting 7

uplinks (in one trunk) to one core-switch, and 1 uplink to another (for redundancy).

To make sure I could be efficient when doing the recabling, I made a patch-list, with

detailed description on where all the cables would go. The patch-list can be seen in

Table 4.1. The ”Trunk”-column is showing what trunk-number to use on that specific

trunk. This is relevant when configuring the trunk on the switches.

From switch Port(s) Patchpanel To switch Port(s) Trunk

sw-core0 1-8 - sw-core2 1-8 trk1

sw-core0 9-16 - sw-core1 1-8 trk2

sw-core0 17-18 - sw-mgmt 1-2 trk10

sw-core0 19-21 CR2-Z02, 1-3 sw-cr2-z02 1-3 trk20

sw-core0 22-24 CR2-Z04, 1-3 sw-cr2-z04 1-3 trk21

sw-core0 25-27 CR2-Z06, 1-3 sw-cr2-z06 1-3 trk22

sw-core0 28-30 CR2-Z08, 1-3 sw-cr2-z08 1-3 trk23

sw-core0 31-33 CR2-Z10, 1-3 sw-cr2-z10 1-3 trk24

sw-core0 34-36 CR2-Z12, 1-3 sw-cr2-z12 1-3 trk25

sw-core0 37-39 CR3-X12, 1-3 sw-cr3-x12 1-3 trk26

sw-core0 40 CR2-Y05, 1 desk, dumb switch - -

sw-core0 42 - sw-infra 8 -

sw-core0 43 CR2-Y06, 4 sw-cr2-y06 4 -

sw-core0 44 CR2-Y08, 4 sw-cr2-y08 4 -

sw-core0 45 CR2-Y10, 4 sw-cr2-y10 4 -

sw-core0 46 CR2-Y12, 4 sw-cr2-y12 4 -

sw-core0 47 CR2-Y14, 5 sw-cr2-y14 4 -

16

4.1 Physical

sw-core0 48 CR2-Y16, 4 sw-cr2-y16 4 -

sw-core1 1-8 - sw-core0 9-16 trk2

sw-core1 9-16 - sw-core2 9-16 trk3

sw-core1 17-18 - sw-mgmt 3-4 trk11

sw-core1 19-21 CR2-X02, 1-3 sw-cr2-x02 1-3 trk27

sw-core1 22-24 CR2-X04, 1-3 sw-cr2-x04 1-3 trk28

sw-core1 25-27 CR2-X06, 1-3 sw-cr2-x06 1-3 trk29

sw-core1 28-30 CR2-X08, 1-3 sw-cr2-x08 1-3 trk30

sw-core1 31-33 CR2-X10, 1-3 sw-cr2-x10 1-3 trk31

sw-core1 34 CR2-Z02, 4 sw-cr2-z02 4 -

sw-core1 35 CR2-Z04, 4 sw-cr2-z04 4 -

sw-core1 36 CR2-Z06, 4 sw-cr2-z06 4 -

sw-core1 37 CR2-Z08, 4 sw-cr2-z08 4 -

sw-core1 38 CR2-Z10, 4 sw-cr2-z10 4 -

sw-core1 39 CR2-Z12, 4 sw-cr2-z12 4 -

sw-core1 40 CR3-X12, 4 sw-cr3-x12 4 -

sw-core1 41-47 - sw-infra 1-7 trk4

sw-core2 1-8 - sw-core0 1-8 trk1

sw-core2 9-16 - sw-core1 9-16 trk3

sw-core2 17-18 - sw-mgmt 5-6 trk12

sw-core2 19-21 CR2-Y06, 1-3 sw-cr2-y06 1-3 trk32

sw-core2 22-24 CR2-Y08, 1-3 sw-cr2-y08 1-3 trk33

sw-core2 25-27 CR2-Y10, 1-3 sw-cr2-y10 1-3 trk34

sw-core2 28-30 CR2-Y12, 1-3 sw-cr2-y12 1-3 trk35

sw-core2 31-33 CR2-Y14, 2-4 sw-cr2-y14 1-3 trk36

sw-core2 34-36 CR2-Y16, 1-3 sw-cr2-y16 1-3 trk37

sw-core2 37-38 - gw1, em1 + em3 - trk15

sw-core2 39 - sw-gpn 21 -

sw-core2 44 CR2-X02, 4 sw-cr2-x02 4 -

sw-core2 45 CR2-X04, 4 sw-cr2-x04 4 -

sw-core2 46 CR2-X06, 4 sw-cr2-x06 4 -

sw-core2 47 CR2-X08, 4 sw-cr2-x08 4 -

sw-core2 48 CR2-X10, 4 sw-cr2-x10 4 -

sw-mgmt 1-2 - sw-core0 17-18 trk10

sw-mgmt 3-4 - sw-core1 17-18 trk11

17

4. DESIGN

sw-mgmt 5-6 - sw-core2 17-18 trk12

sw-mgmt 7 CR2-X02, 24 sw-mgmt-cr2-x02 25 -

sw-mgmt 8 CR2-X03, 24 sw-mgmt-cr2-x03 25 -

sw-mgmt 9 CR2-X04, 24 sw-mgmt-cr2-x04 25 -

sw-mgmt 10 CR2-X05, 24 sw-mgmt-cr2-x05 25 -

sw-mgmt 11 CR2-X06, 24 sw-mgmt-cr2-x06 25 -

sw-mgmt 12 CR2-X07, 24 sw-mgmt-cr2-x07 25 -

sw-mgmt 13 CR2-X08, 24 sw-mgmt-cr2-x08 25 -

sw-mgmt 14 CR2-X09, 24 sw-mgmt-cr2-x09 25 -

sw-mgmt 15 CR2-X10, 24 sw-mgmt-cr2-x10 25 -

sw-mgmt 16 CR2-Y01, 24 sw-mgmt-cr2-y01 25 -

sw-mgmt 17 CR2-Y02, 24 sw-mgmt-cr2-y02 25 -

sw-mgmt 18 CR2-Y05, 24 sw-mgmt-cr2-y05 25 -

sw-mgmt 19 CR2-Y06, 24 sw-mgmt-cr2-y06 25 -

sw-mgmt 20 CR2-Y07, 24 sw-mgmt-cr2-y07 25 -

sw-mgmt 21 CR2-Y08, 24 sw-mgmt-cr2-y08 25 -

sw-mgmt 22 CR2-Y09, 24 sw-mgmt-cr2-y09 25 -

sw-mgmt 23 CR2-Y10, 24 sw-mgmt-cr2-y10 25 -

sw-mgmt 24 CR2-Y11, 24 sw-mgmt-cr2-y11 25 -

sw-mgmt 25 CR2-Y12, 24 sw-mgmt-cr2-y12 25 -

sw-mgmt 26 CR2-Y13, 24 sw-mgmt-cr2-y13 25 -

sw-mgmt 27 CR2-Y14, 24 sw-mgmt-cr2-y14 25 -

sw-mgmt 28 CR2-Y15, 24 sw-mgmt-cr2-y15 25 -

sw-mgmt 29 CR2-Y16, 24 sw-mgmt-cr2-y16 25 -

sw-mgmt 30 CR2-Y17, 24 sw-mgmt-cr2-y17 25 -

sw-mgmt 31 CR2-Z01, 24 sw-mgmt-cr2-z01 25 -

sw-mgmt 32 CR2-Z02, 24 sw-mgmt-cr2-z02 25 -

sw-mgmt 33 CR2-Z03, 24 sw-mgmt-cr2-z03 25 -

sw-mgmt 34 CR2-Z04, 24 sw-mgmt-cr2-z04 25 -

sw-mgmt 35 CR2-Z05, 24 sw-mgmt-cr2-z05 25 -

sw-mgmt 36 CR2-Z06, 24 sw-mgmt-cr2-z06 25 -

sw-mgmt 37 CR2-Z07, 24 sw-mgmt-cr2-z07 25 -

sw-mgmt 38 CR2-Z08, 24 sw-mgmt-cr2-z08 25 -

sw-mgmt 39 CR2-Z09, 24 sw-mgmt-cr2-z09 25 -

sw-mgmt 40 CR2-Z10, 24 sw-mgmt-cr2-z10 25 -

sw-mgmt 41 CR2-Z11, 24 sw-mgmt-cr2-z11 25 -

sw-mgmt 42 CR2-Z12, 24 sw-mgmt-cr2-z12 25 -

sw-mgmt 43 CR2-Z13, 24 sw-mgmt-cr2-z13 25 -

sw-mgmt 44 CR3-X11, 24 sw-mgmt-cr3-x11 25 -

sw-mgmt 45 CR3-X12, 24 sw-mgmt-cr3-x12 25 -

18

4.2 Logical

alihlt-swgpn 1-2 - gw0, em0 + em2 - trk16

alihlt-swgpn 3-4 - gw1, em0 + em2 - trk17

alihlt-swgpn 5 CR3-X12, 23 webcam, CR3-X12 - -

alihlt-swgpn 6 CR2-X03, 1 webcam, CR2-X03 - -

alihlt-swgpn 7 CR2-Y01, 1 not ours, Y01 - -

alihlt-swgpn 8 CR2-X09, 1 webcam, CR2-X09 - -

alihlt-swgpn 9 CR3-X05, 24 webcam, CR3-X05 - -

sw-infra 1-7 - sw-core1 41-47 trk4

sw-infra 8 - sw-core0 42 -

sw-infra 9-10 - gw0, em1 + em3 - trk14

Table 4.1: Patchlist - The patchlist, showing where all cables are connected.

Taking into consideration the patchlist, and the physical placement of the switches,

we start to see how everything connected. A preliminary network-diagram can be seen

on Figure 4.1.

4.1.3 Servers

We need to move some servers, since they are going to be assigned new tasks (for some

of the servers, this is just temporarily, until the virtual machines is in place). A few

are going to be moved to act as temporary gateways, DHCP and DNS. The two latter

is going to be virtualized at some point, while the gateways are going to be moved to

some new servers in the future.

4.2 Logical

By logical, I mean IP-addresses and VLANs primarily. Services such as DNS, DHCP

and the like, has been assigned it’s own section at the end of this chapter.

19

4. DESIGN

Figure 4.1: Network layout - Overview of the final network-layout.

20

4.2 Logical

4.2.1 IP-scheme

From CERN’s IT-department, we’ve been assigned a class B subnet; 10.162.0.0/16.

Even though all external connections to/from the cluster, is made via a gateway doing

NAT (to public IP’s), we chose to use this assigned range, just in case we ever need to

interconnect our internal network with some of CERN’s.

There is a need for three major subnets. One for InfiniBand to the PROD-cluster,

one for ethernet (divided into smaller subnets), and one for management (IPMI, CHARM,

BMC). Using this setup, we end up using 3/8 of available IP-addresses in the 10.162.0.0/16-

network, which should give us plenty of room to grow in.

/16 /17 /18 /19 Description

10.162.0.0 10.162.0.0 10.162.0.0 10.162.0.0 Infiniband
10.162.32.0 ”Ethernet”

10.162.64.0 10.162.64.0 Management
10.162.96.0 Free

10.162.128.0 Free

Table 4.2: Subnets - A table showing the different major subnets.

The ”ethernet”-subnet is divided into smaller subnets.

/21 /22 /23 /24 Description

10.162.32.0 PROD-cluster

10.162.40.0 DEV-cluster

10.162.48.0 10.162.48.0 Infrastructure
10.162.52.0 VMs

10.162.56.0 10.162.56.0 10.162.56.0 10.162.56.0 Gateway
10.162.57.0 Login PROD-cluster
10.162.58.0 Login DEV-cluster
10.162.59.0 Admin
10.162.60.0 Switch management
10.162.61.0 Non-authorized hosts
10.162.62.0 GPN management
10.162.63.0 Free

Table 4.3: ”Ethernet”-subnets - A table showing the different ”ethernet”-subnets.

21

4. DESIGN

We have also pre-assigned IP-addresses for central services, such as gateways, DNS

and DHCP. See Table 4.4.

Subnet IP-address Host

All subnets 10.162.x.1 sw-core1
10.162.x.2 sw-core0
10.162.x.3 sw-core2
10.162.x.4 sw-mgmt

10.162.48.0/22 10.162.48.11 ns0
10.162.48.12 ns1
10.162.48.20 ecs0
10.162.48.21 ecs1
10.162.48.22 ecs
10.162.48.30 dcs0
10.162.48.31 dcs1
10.162.48.32 dcs
10.162.48.40 vobox0
10.162.48.41 vobox1
10.162.48.50 gui0
10.162.48.51 gui1
10.162.48.60 db0
10.162.48.61 db1
10.162.48.70 ms0
10.162.48.71 ms1
10.162.48.72 ms2
10.162.48.80 mon0
10.162.48.81 mon1
10.162.50.2 vcm0
10.162.50.10 vhost0
10.162.50.11 vhost1

10.162.56.0/24 10.162.56.11 alihlt-carp0
10.162.56.12 gw0
10.162.56.13 gw1

10.162.59.0/24 10.162.59.11 desk

10.162.60.0/24 10.162.60.251 OSPF sw-mgmt
10.162.60.252 OSPF sw-core2
10.162.60.253 OSPF sw-core0
10.162.60.254 OSPF sw-core1

10.162.62.0/24 10.162.62.11 sw-gpn

Table 4.4: Reserved IP-addresses - A table showing reserved IP-addresses.

22

4.2 Logical

4.2.2 VLANs

We need to put each of our subnets into it’s own VLAN, so that we achieve separation

on layer 2. This is also needed if we want to implement traffic-restrictions using access-

lists at a later time.

VLAN ID Name Subnet Description

1 DISABLED - VLAN is disabled, since this is
the default VLAN.

5 NOT AUTHORIZED 10.162.61.0/24 For unused ports (and maybe
future use together with
802.1X).

10 PROD 10.162.32.0/21 Production-cluster.

20 DEV 10.162.40.0/21 Development-cluster.

30 INFRA 10.162.48.0/22 Infrastructure. DHCP, DNS,
storage, SQL, etc.

40 VM 10.162.52.0/22 Future subnet for VMs.

50 GW 10.162.56.0/24 For the main gateways provid-
ing internet.

60 LOGIN-PROD 10.162.57.0/24 Login-machines to the PROD-
cluster.

70 LOGIN-DEV 10.162.58.0/24 Login-machines to the DEV-
cluster.

80 SWITCH-MGMT 10.162.60.0/24 Management for the switches.

90 MGMT 10.162.64.0/19 Management for nodes (BMC,
IPMI, CHARM).

100 ADMIN 10.162.59.0/24 Subnet for full access to entire
network (when ACLs are im-
plemented).

110 GPN - VLAN for the GPN-network
on the GPN-switch.

120 GPN-MGMT 10.162.62.0/24 For managing the GPN-switch
internally.

Table 4.5: VLANs - A table showing the different VLANs.

23

4. DESIGN

4.3 Network-services

The network-services is pretty much the same as before. The only exception is that

we’re moving away from LDAP. This is going to ease up on the maintenance, and the

learning-curve isn’t that steep.

4.3.1 DNS

We’re going to run two physical servers, running Debian Squeeze with ISC DNS. They

are going to be set up as master and slave, to ensure redundancy. At some point this

service is going into two virtual machines, dedicated to running DNS (and nothing

else).

4.3.2 DHCP

ISC DHCP is going to be set up on the same machines running ISC DNS. Only one

subnet (NON AUTHORIZED HOSTS) is going to be set up with dynamic leases with

redundancy. The rest are static leases, and doesn’t need any redundancy (same static

leases on both servers, first-come-first-serve rule applies). At some point, this service

is going into two virtual machines, as with ISC DNS, but dedicated to running ISC

DHCP (and nothing else - which implies 4 VMs in total for DNS and DHCP).

4.3.3 Gateway

This is going to be installed on two separate servers with a quad-NIC each, running

OpenBSD. We’re going to use PF and CARP to ensure NAT, firewall and redundan-

cy/failover. We’re going to trunk 2 links to achieve 2Gbps throughput.

24

5

Implementation

The implementation was done in several phases, according to our milestones as previ-

ously discussed.

5.1 Physical

First step was to re-cable and move switches. This took about 3 days, each with

around 18 hours of work. First step was to power down the entire cluster, except

critical infrastructure-machines (such as gateways, DHCP, DNS, fileservers, etc). I

then wiped the config of two switches that was not in use, moved them out of the way,

and moved all the previous mentioned infrastructure-machines over to this switch. This

way I minimized the downtime of those nodes.

Next step was to pull all network-cables out from all the patchpanels and switches,

and the power-cord from all the switches (except the two that the infrastructure was

connected to, of course). I then moved one switch at the time, until all was moved. I

then had 5 3500yl-switches left, together with some 3400cl’s (that’s going to be retired

– the two temporary infrastructure-switches are part of these); 4 to be used as cores,

and the last one to be used as infrastructure-switch (having extra bandwidth, since

fileservers is to be connected to it).

Next up, was to move the core-switches a bit, so that they had more space between

them (for easier access to cables), and to move the infrastructure-switch into place

(almost the same place as the cores).

25

5. IMPLEMENTATION

Now the patchlist (as seen on Figure 4.1) really started to come to use. First off

was to interconnect all the core-switches and sw-infra (the infrastructure-switch). All

the edge-switches was then to be connected to the core-switches. Then we had the

gateways, the desk-machine, etc, that needed to be connected.

5.2 Switch configuration

After all the switches had been moved, and all the cables reconnected, it was time to

reconfigure the switches.

5.2.1 Initial config

For the initial configuration, I made a template, with three variables; IP, host and

trunk-number (as seen in the patchlist). This way I could generate config-files for all

the switches, without having to manually change stuff – I just made a CSV-file (see

Listing 5.1), containing a list of IP, host and trunk-number.

sw−cr2−x02 #10.162.60.101# trk27

sw−cr2−x04 #10.162.60.103# trk28

sw−cr2−x06 #10.162.60.105# trk29

sw−cr2−x08 #10.162.60.107# trk30

sw−cr2−x10 #10.162.60.109# trk31

sw−cr2−y06 #10.162.60.115# trk32

sw−cr2−y08 #10.162.60.117# trk33

sw−cr2−y10 #10.162.60.119# trk34

sw−cr2−y12 #10.162.60.121# trk35

sw−cr2−y14 #10.162.60.123# trk36

sw−cr2−y16 #10.162.60.125# trk37

sw−cr2−z02 #10.162.60.128# trk20

sw−cr2−z04 #10.162.60.130# trk21

sw−cr2−z06 #10.162.60.132# trk22

sw−cr2−z08 #10.162.60.134# trk23

sw−cr2−z10 #10.162.60.136# trk24

sw−cr2−z12 #10.162.60.138# trk25

sw−cr3−x12 #10.162.60.150# trk26

Listing 5.1: Switch CSV-file - One of the CSV-files used to generate switch-configs.

26

5.2 Switch configuration

e r a s e startup−c o n f i g

c o n f i g

no password manager

no password operator

max−v lans 20

wr mem

re l oad

conf

host HOSTLOL

spanning−t r e e

trunk 1−3 TRUNKLOL lacp

vlan 1 name DISABLED

no vlan 1 ip add

vlan 5 name NOT−AUTHORIZED

vlan 5 tagged TRUNKLOL, 4

vlan 10 name PROD

vlan 10 tagged TRUNKLOL, 4

vlan 20 name DEV

vlan 20 tagged TRUNKLOL, 4

vlan 30 name INFRA

vlan 30 tagged TRUNKLOL, 4

vlan 40 name VM

vlan 40 tagged TRUNKLOL, 4

vlan 50 name GW

vlan 50 tagged TRUNKLOL, 4

vlan 60 name LOGIN−PROD

vlan 60 tagged TRUNKLOL, 4

vlan 70 name LOGIN−DEV

vlan 70 tagged TRUNKLOL, 4

vlan 80 name SWITCH−MGMT

vlan 80 tagged TRUNKLOL, 4

vlan 80 ip add IPLOL/24

vlan 90 name IPMI−CHARM

vlan 90 tagged TRUNKLOL, 4

vlan 100 name ADMIN

vlan 100 tagged TRUNKLOL, 4

vlan 200 name TEMP

vlan 200 tagged TRUNKLOL, 4

vlan 200 untagged 5−48

no vlan 1 tagged TRUNKLOL,4−48

no vlan 1 untagged TRUNKLOL,4−48

Listing 5.2: Initial edge-switch config-template - The initial switch-config applied

to all edge-switches.

27

5. IMPLEMENTATION

With the config-template (see Listing 5.2) in place, together with the CSV-file, we

can easily generate configs for all the switches, using a little bash-script (as seen in

Listing 5.3). The script iterates through the CSV-file, replaces the temporary variable

we set in the config-template, and saves each config as it’s own file. We can then copy

the content of a file, and paste it when configuring the appropriate switch.

#!/ bin /bash

while read switch ; do

host =‘echo ” $switch ” | cut −d’# ’ −f1 ‘

ip =‘echo ” $switch ” | cut −d’# ’ −f2 ‘

t rk =‘echo ” $switch ” | cut −d’# ’ −f3 ‘

cat 3500 yl−con f i g−template . txt | sed −e ” s /HOSTLOL/ $host /” | sed −e ” s /

IPLOL/ $ip /” | sed −e ” s /TRUNKLOL/ $trk /” > $host . txt

done < switch−ip−edge . txt

Listing 5.3: Bash-script to generate configs - Bash-script that generated all the

necessary config-files.

The process to generate the initial configuration-files for the management-switches

(se Listing 5.4 for the initial config, as this differs from the other, since it’s a different

switch-model) and core-switches, is just the same.

c o n f i g

snmp−s e r v e r name HOSTLOL

system con f ig−pw−mode PC1−encrypted

vlan database

vlan 80 SWITCH−MGMT

vlan 90 MGMT

e x i t

spanning−t r e e 1w

spanning−t r e e p r i o r i t y 32768

system gateway 1 0 . 1 6 2 . 6 0 . 1

system ip−mode manual

system ip−addr IPLOL

system mask 2 5 5 . 2 5 5 . 2 5 5 . 0

management−vlan 80

28

5.2 Switch configuration

i n t e r f a c e e the rne t 1/1

swi tchport a c c e s s nat ive 90

swi tchport a c c e s s vlan untagged 90

e x i t

[d u p l i c a t e code removed , same c o n f i g f o r e the rne t 1/1 through 1/24]

i n t e r f a c e e the rne t 1/24

swi tchport a c c e s s nat ive 90

swi tchport a c c e s s vlan untagged 90

e x i t

i n t e r f a c e e the rne t 1/25

swi tchport a c c e s s nat ive 1

swi tchport a c c e s s vlan tagged 80

swi tchport a c c e s s vlan tagged 90

e x i t

i n t e r f a c e e the rne t 1/26

swi tchport a c c e s s nat ive 1

swi tchport a c c e s s vlan tagged 80

swi tchport a c c e s s vlan tagged 90

e x i t

no system password

no system web

system save

Listing 5.4: Initial management-switch config-template - The initial switch-config

applied to all management-switches.

5.2.2 Remove temporary switches

The switches used temporarily for the infrastructure, could now be removed. The

infrastructure-machines was moved over to the new switches. As you can see in the

configuration-files, all ports on all edge-switches has been put into VLAN 200, which

is just a temporary VLAN without any routing. At this point, we actually powered on

the entire cluster again. The nodes didn’t notice the change – since it was placed on

a VLAN, and the old network was just flat, this was all it needed to work. This way

29

5. IMPLEMENTATION

I could configure more features on the switches, without causing too much downtime

(and, if done at night, nobody would even notice).

5.2.3 Advanced switch config

With everything back up and working, we can configure more advanced services, mainly

on the core-switches.

5.2.3.1 STP

Spanning Tree Protocol is used to avoid loops in the network. This can be fine-tuned,

however, there are a few, basic settings that should be done. This is to ensure that the

traffic flows in the right directions. On the edge-switches, the config shown in Listing

5.5.

spanning−t r e e <trunkname> path−co s t 8000

spanning−t r e e 4 path−co s t 20000

Listing 5.5: STP configuration on edge-switches - STP-config used on the edge-

switches.

To see how STP was configured on the core-switches, see Listing A.2, A.3, A.4 and

A.5.

5.2.3.2 Routing

To enable traffic to flow between the subnets/VLANs, we need to enable routing. This

is as simple as turning it on, as seen on Listing 5.6. We could then route traffic between

the subnets by using static routes, however, the smart thing to do, is to use a dynamic

routing protocol, that keeps track of changes automatically.

ip rout ing

Listing 5.6: Turn on routing - Turning on routing on a switch is simple.

30

5.2 Switch configuration

5.2.3.3 OSPF

As mentioned, we want to use a dynamic routing protocol to dynamically keep track

of networks available. The setup is quite simple, as seen when configuring OSPF on

sw-core1 in Listing 5.7.

ip route 0 . 0 . 0 . 0 0 . 0 . 0 . 0 1 0 . 1 6 2 . 5 6 . 1 1

ip route 1 0 . 1 6 2 . 0 . 0 2 5 5 . 2 5 5 . 2 2 4 . 0 r e j e c t

i n t e r f a c e loopback 0 ip address 1 0 . 1 6 2 . 6 0 . 2 5 4

ip router−id 1 0 . 1 6 2 . 6 0 . 2 5 4

route r o sp f

area backbone

r e d i s t r i b u t e s t a t i c

e x i t

vlan 5 ip osp f 1 0 . 1 6 2 . 6 1 . 1 area backbone

vlan 10 ip osp f 1 0 . 1 6 2 . 3 2 . 1 area backbone

vlan 20 ip osp f 1 0 . 1 6 2 . 4 0 . 1 area backbone

vlan 30 ip osp f 1 0 . 1 6 2 . 4 8 . 1 area backbone

vlan 40 ip osp f 1 0 . 1 6 2 . 5 2 . 1 area backbone

vlan 50 ip osp f 1 0 . 1 6 2 . 5 6 . 1 area backbone

vlan 60 ip osp f 1 0 . 1 6 2 . 5 7 . 1 area backbone

vlan 70 ip osp f 1 0 . 1 6 2 . 5 8 . 1 area backbone

vlan 80 ip osp f 1 0 . 1 6 2 . 6 0 . 1 area backbone

vlan 90 ip osp f 1 0 . 1 6 2 . 6 4 . 1 area backbone

vlan 100 ip osp f 1 0 . 1 6 2 . 5 9 . 1 area backbone

Listing 5.7: Configuring OSPF on sw-core1 - Configuring OSPF is quite simple.

The config for the other core-switches are similar, and can be seen in Listing A.3,

A.4 and A.5.

5.2.3.4 VRRP

One of the biggest problems with using different subnets, is that you need a default

gateway to be able to communicate with the other subnets. What happens if this

gateway becomes unavailable, is that you can’t reach any other subnets than the one

you’re in. One way to avoid this issue, is to configure VRRP, as this makes the gateway

a virtual IP, that can be moved between the switches, so that, if a switch becomes

unavailable, another switch takes over the role as gateway. Configuring this on sw-

core1 can be seen in Listing 5.8.

31

5. IMPLEMENTATION

route r vrrp

vlan 5 vrrp vr id 5

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 1 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 10 vrrp vr id 10

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 3 2 . 1 2 5 5 . 2 5 5 . 2 4 8 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 20 vrrp vr id 20

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 4 0 . 1 2 5 5 . 2 5 5 . 2 4 8 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 30 vrrp vr id 30

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 4 8 . 1 2 5 5 . 2 5 5 . 2 5 2 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 40 vrrp vr id 40

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 2 . 1 2 5 5 . 2 5 5 . 2 5 2 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 50 vrrp vr id 50

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 6 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 60 vrrp vr id 60

32

5.2 Switch configuration

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 7 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 70 vrrp vr id 70

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 8 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 80 vrrp vr id 80

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 0 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 90 vrrp vr id 90

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 4 . 1 2 5 5 . 2 5 5 . 2 2 4 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 100 vrrp vr id 100

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 9 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 255

enable

e x i t

e x i t

Listing 5.8: Configuring VRRP on sw-core1 - Configuring VRRP is simple.

The config for the other core-switches are similar, and can be seen in Listing A.3,

A.4 and A.5.

5.2.3.5 ip helper-address

To enable clients to reach DHCP-servers in other VLANs through DHCP-discover,

ip−helper−address <IP−address of DHCP−server> is what you’ll need to configure on the

33

5. IMPLEMENTATION

switches. This will forward the DHCP-discover to the IP-address listed, and the rest

is normal procedure.

5.2.3.6 ip forward-protocol

We have a custom-made monitoring system in the cluster, that’s called SysMES. It

monitors all kinds of things (from network to filesystems), but it relies on broadcasts

to work. Since not all SysMES-clients are in the same subnet (basically, all nodes

is a SysMES-client), things won’t work without extra configs on the switches. Here

we need to specify ip udp−bcast−forward first, and then ip forward−protocol <protocol> <

destination IP−address> <port−number> for each forward we want to have (and on each

VLAN we want it working on). In our case, we have two SysMES-servers, which listens

on messages broadcasted to destination-port 6666. The appropriate config is therefore

as shown on Listing 5.9.

ip udp−bcast−forward

vlan 10 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

vlan 10 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

vlan 20 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

vlan 20 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

vlan 30 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

vlan 30 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

vlan 40 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

vlan 40 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

vlan 50 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

vlan 50 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

vlan 60 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

vlan 60 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

vlan 70 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

vlan 70 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

vlan 80 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

vlan 80 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

vlan 90 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

vlan 90 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

vlan 100 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

vlan 100 ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

Listing 5.9: Configuring broadcast-forwards - Making the switch forward broadcasts

to a specific IP-address.

34

5.3 DNS & DHCP

5.2.4 Final switch-configs

The final configuration for sw-core1 can be seen in Listing A.2. The final configuration

for sw-core0 can be seen in Listing A.3. The final configuration for sw-core2 can be

seen in Listing A.4. The final configuration for sw-mgmt can be seen in Listing A.5.

5.3 DNS & DHCP

After the configuration of the switches was done, we could start on the configuration

of DHCP and DNS.

5.3.1 Preparation

First of all, we need to extract the old information from the old LDAP-database (that

we don’t use anymore), so that we don’t have to manually enter all the MAC-addresses

again. Since the old LDAP-database had a lot of information, it was a somewhat

tedious process to extract the correct information.

First, I extracted the hostname, IP-address and MAC-address, from the old LDAP-

database. I excluded all entries that had an MAC-address of ”00:00:00:00:00:00”, due

to the fact that it’s not a valid MAC-address (for a node – it’s used in some rare

occasions for broadcasting, so in a way it’s a valid MAC-address), and that all entries

without any associated host had this value as it’s MAC-address (which actually could

be used to find free/available IP-addresses in the old setup – I guess they didn’t think

of that). I then put it all into a CSV-file. This was all done using the commands as

seen in Listing 5.10.

cat ldap . l d i f | grep −A18 ”ou=dhcp” > ldap−dhcp . l d i f

cat ldap−dhcp . l d i f | grep − i ”ou=dhcp” | cut −d ’ , ’ −f 1 | sed −e ’ s /dn \ : cn

\=//’ | grep −viE ”(dhcp | 1 9 2 . 1 6 8 . 0 . 0 | group1 | pool1) ” > hostnames . txt

while read hostname ; do

ip =‘cat ldap−dhcp . l d i f | grep −A18 ”cn\=$hostname \ ,” | grep ” f i x e d\−
address ” | sed −e ’ s / dhcpStatements \ :\ f i x e d\−address \ // ’ ‘

mac=‘cat ldap−dhcp . l d i f | grep −A18 ”cn\=$hostname \ ,” | grep ”

dhcpHWAddress” | sed −e ’ s /dhcpHWAddress \ : \ : \ // ’ | sed −e ’ s /

dhcpHWAddress \ :\ e the rne t \ // ’ ‘

35

5. IMPLEMENTATION

i f [! −z ” $ ip ”] ; then

$ip has a value

echo ”$hostname # $mac # $ip ” >> complete−address− l i s t . txt

i f [”$mac” != ” 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 ”] ; then

only p r i n t e n t r i e s that has a v a l i d MAC−address

echo ”$hostname # $mac # $ip ” >> only−va l id−mac−addre s s e s . txt

f i

f i

done < hostnames . txt

Listing 5.10: Extracting information from old LDAP-database - The commands

used to extract IP, MAC and hostname from the old LDAP-database.

Then I had to process this CSV-file, and generate DNS and DHCP configuration-

files with new hostnames and IP-addresses (the MAC is still the same). This was done

with a lot of trying and failing. After a lot of ugly bash-scripting, I managed to produce

usable results. You can see the final script (it could have been written much cleaner,

though) in Listing A.1.

5.3.2 Final config

After having generated these configuration-files containing host-information, it was just

a matter of finalizing it all, using pretty much just standard configurations.

5.4 Gateway

The gateways was configured temporarily (they are to be moved to virtual machines

at a later point) on two way too powerful nodes (you don’t need 16 cores and 24GB

of memory to run DHCP and DNS, unless you have a godlike amount of nodes). I

installed OpenBSD 4.8 on them, and configured them with PF (NAT and firewall) and

CARP (for redundancy).

36

5.4 Gateway

5.4.1 Initial network-config

Before I could start configuring CARP and PF, I needed to have basic network con-

figuration in place. Since we’re going to trunk two links to get 2Gbps throughput, we

need to set up this first. We have a quad-NIC in each gateway, giving us a total of

6 available Gpbs network-interfaces. We’re going to use two for the external network,

two for the internal network, and one to sync PF between the two gateways. To achieve

added redundancy, we’re going to put one internal and one external network-interface

in each trunk. The configuration shown in Listing 5.11 is for the master gateway – the

configuration is just the same for the backup gateway, except different IP-addresses.

Conf igure working c o n f i g on running system

roo t@a l i h l t−carp0 :˜# i f c o n f i g em0 up

roo t@a l i h l t−carp0 :˜# i f c o n f i g em1 up

roo t@a l i h l t−carp0 :˜# i f c o n f i g em2 up

roo t@a l i h l t−carp0 :˜# i f c o n f i g em3 up

roo t@a l i h l t−carp0 :˜# i f c o n f i g trunk0 trunkport em0

roo t@a l i h l t−carp0 :˜# i f c o n f i g trunk0 trunkport em2

roo t@a l i h l t−carp0 :˜# i f c o n f i g trunk0 trunkproto lacp 1 3 7 . 1 3 8 . 1 1 . 2 0 netmask

2 5 5 . 2 5 5 . 0 . 0

roo t@a l i h l t−carp0 :˜# i f c o n f i g trunk0 trunkport em1

roo t@a l i h l t−carp0 :˜# i f c o n f i g trunk0 trunkport em3

roo t@a l i h l t−carp0 :˜# i f c o n f i g trunk0 trunkproto lacp 1 0 . 1 6 2 . 5 6 . 1 2 netmask

2 5 5 . 2 5 5 . 2 5 5 . 0

To make i t p e r s i s t a n t through reboot

roo t@a l i h l t−carp0 :˜# f o r n i c in em0 em1 em2 em3 ; do echo ”up” > / e tc /

hostname . $n ic ; done

roo t@a l i h l t−carp0 :˜# echo ” trunkproto lacp trunkport em0 trunkport em2

1 3 7 . 1 3 8 . 1 1 . 2 0 netmask 2 5 5 . 2 5 5 . 0 . 0 ” > / e tc /hostname . trunk0

roo t@a l i h l t−carp0 :˜# echo ” trunkproto lacp trunkport em1 trunkport em3

1 0 . 1 6 2 . 5 6 . 1 2 netmask 255 . 255 . 255 . 0” > / e tc /hostname . trunk1

We should a l s o add a rout ing−entry to l e t the

gateway know about the 10.162.0 .0/16− network

roo t@a l i h l t−carp0 :˜# route add −net 1 0 . 1 6 2 . 0 . 0 / 1 6 1 0 . 1 6 2 . 5 6 . 1

roo t@a l i h l t−carp0 :˜# echo ” ! route add −net 1 0 . 1 6 2 . 0 . 0 / 1 6 1 0 . 1 6 2 . 5 6 . 1 ” >> /

e tc /hostname . trunk1

Listing 5.11: Basic network-config on gateways - Commands to implement basic

network configuration when using trunks.

37

5. IMPLEMENTATION

We also have to configure this on the switches, since we’re trunking. This was

already done before configuring the gateways.

5.4.2 CARP

Once normal network-connectivity is achieved, we can start configuring CARP. See

Listing 5.12 for a complete configuration.

Make a l i h l t −carp0 master , and a f t e r a f a i l o v e r , make i t master again

roo t@a l i h l t−carp0 :˜# s y s c t l net . i n e t . carp . preempt=1

net . i n e t . carp . preempt : 0 −> 1

Make i t p e r s i s t e n t through boot , add the f o l l o w i n g to

/ etc / s y s c t l . conf (uncomment i t i f i t ’ s a l r eady there)

On the backup (a l i h l t −carp1) , make sure i t ’ s NOT there

roo t@a l i h l t−carp0 :˜# cat / e tc / s y s c t l . conf | grep preempt

net . i n e t . carp . preempt=1 # 1=Enable carp (4) preemption

Then , l e t ’ s s e t up the CARP−i n t e r f a c e s

(two , in our case − i n t e r n a l and e x t e r n a l)

r oo t@a l i h l t−carp0 :˜# i f c o n f i g carp0 137 .138 . 11 . 19/16 vhid 55 pass

s u p e r s e c r e t advbase 1 advskew 0

roo t@a l i h l t−carp0 :˜# i f c o n f i g carp1 10 . 162 . 56 . 11/24 vhid 66 pass

s u p e r s e c r e t advbase 1 advskew 0

roo t@a l i h l t−carp0 :˜# i f c o n f i g carp0

carp0 : f l a g s =8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

l l a d d r 0 0 : 0 0 : 5 e : 0 0 : 0 1 : 3 7

p r i o r i t y : 0

carp : MASTER carpdev trunk0 vhid 55 advbase 1 advskew 0

groups : carp

s t a t u s : master

i n e t 1 3 7 . 1 3 8 . 1 1 . 1 9 netmask 0 x f f f f 0 0 0 0 broadcast 137 . 138 . 255 . 255

i n e t 6 f e80 : : 2 0 0 : 5 e f f : f e00 :137% carp0 p r e f i x l e n 64 scope id 0xb

roo t@a l i h l t−carp0 :˜# i f c o n f i g carp1

carp1 : f l a g s =8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

l l a d d r 0 0 : 0 0 : 5 e : 0 0 : 0 1 : 4 2

p r i o r i t y : 0

carp : MASTER carpdev trunk1 vhid 66 advbase 1 advskew 0

groups : carp

s t a t u s : master

i n e t 1 0 . 1 6 2 . 5 6 . 1 1 netmask 0 x f f f f f f 0 0 broadcast 1 0 . 1 6 2 . 5 6 . 2 5 5

i n e t 6 f e80 : : 2 0 0 : 5 e f f : f e00 :142% carp1 p r e f i x l e n 64 scope id 0xc

38

5.4 Gateway

Now, we need to make i t p e r s i s t e n t through reboot s

r oo t@a l i h l t−carp0 :˜# echo ” i n e t 1 3 7 . 1 3 8 . 1 1 . 1 9 2 5 5 . 2 5 5 . 0 . 0 137 . 138 . 255 . 255

vhid 55 pass <supe r s e c r e t> advbase 1 advskew 0” > / e tc /hostname . carp0

roo t@a l i h l t−carp0 :˜# echo ” i n e t 1 0 . 1 6 2 . 5 6 . 1 1 2 5 5 . 2 5 5 . 2 5 5 . 0 1 0 . 1 6 2 . 5 6 . 2 5 5

vhid 66 pass <supe r s e c r e t> advbase 1 advskew 0” > / e tc /hostname . carp1

Listing 5.12: CARP-configuration - Configuration of CARP in OpenBSD 4.8.

Now, we apply the exactly the same configuration on the other gateway. The only

thing we change, is the value of ”advskew”; the higher this number is, the lower priority

it gets. The lower priority it has, the lower chance it has of becoming master. In other

words; the CARP-device with the highest adskew-value, becomes master (it’s based on

a formula, so, you can also change ”advbase”, but this leads to longer time before a

backup takes over in case the master goes down). I’ve used 100 as the adskew-value on

the backup-gateway.

5.4.3 PF

Now, after CARP is done, we need to setup the firewall itself, PF – which will handle

NAT, firewall-rules, port-forwards, and such things. Since we’re using CARP, we also

need to keep the state of all connections in sync between the gateways (so that if a

gateway fails, the clients won’t notice anything).

To do this, we’ve connected em4 on one gateway, to em4 on the other (directly,

it does not go through any switches or anything like that). This is done because the

pfsync protocol doesn’t provide any cryptography or authentication mechanism – this,

if you don’t use a secure network, like a crossover cable, an attacker may use spoofed

pfsync packets to alter the firewalls state tables and bypass filter rules. Se Listing 5.13

for the configuration needed.

On main gateway

roo t@a l i h l t−carp0 :˜# i f c o n f i g em4 1 7 2 . 3 0 . 3 0 . 1 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0

roo t@a l i h l t−carp0 :˜# i f c o n f i g pfsync0 syncdev em4

roo t@a l i h l t−carp0 :˜# i f c o n f i g pfsync0 up

roo t@a l i h l t−carp0 :˜# i f c o n f i g pfsync0

pfsync0 : f l a g s =41<UP,RUNNING> mtu 1500

39

5. IMPLEMENTATION

p r i o r i t y : 0

pfsync : syncdev : em4 maxupd : 128 d e f e r : o f f

groups : carp pfsync

roo t@a l i h l t−carp0 :˜# echo ” i n e t 1 7 2 . 3 0 . 3 0 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0 172 . 30 . 30 . 255” >

/ e t c /hostname . em4

roo t@a l i h l t−carp0 :˜# echo ”up syncdev em4” > / e tc /hostname . pfsync0

On backup gateway

roo t@a l i h l t−carp1 :˜# i f c o n f i g em4 1 7 2 . 3 0 . 3 0 . 2 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0

roo t@a l i h l t−carp1 :˜# i f c o n f i g pfsync0 syncdev em4

roo t@a l i h l t−carp1 :˜# i f c o n f i g pfsync0 up

roo t@a l i h l t−carp1 :˜# i f c o n f i g pfsync0

pfsync0 : f l a g s =41<UP,RUNNING> mtu 1500

p r i o r i t y : 0

pfsync : syncdev : em4 maxupd : 128 d e f e r : o f f

groups : carp pfsync

roo t@a l i h l t−carp1 :˜# echo ” i n e t 1 7 2 . 3 0 . 3 0 . 2 2 5 5 . 2 5 5 . 2 5 5 . 0 172 . 30 . 30 . 255” >

/ e t c /hostname . em4

roo t@a l i h l t−carp1 :˜# echo ”up syncdev em4” > / e tc /hostname . pfsync0

Listing 5.13: PF-setup - Setup of PF in OpenBSD 4.8.

Now, to the fun part. Configuring the actual PF-configuration file. Since we’re using

CARP, we should have the same PF-configuration on both gateways (if the master-

gateway goes down, we want the backup-gateway to behave just the same). We can

make the configuration on the master-gateway, and then just copy it directly over to the

backup-gateway (without changing anything at all, actually). The current PF-config,

which is stored in /etc/pf.conf, is shown in Listing 5.14.

Macros & v a r i a b l e s

I n t e r f a c e s

p f s y n c i f =”em4”

e x t i f =”trunk0 ”

i n t i f =”trunk1 ”

e x t c a r p i f =”carp0 ”

i n t c a r p i f =”carp1 ”

a l l e x t i f =”{” $ e x t i f $ e x t c a r p i f ”}”
a l l i n t i f =”{” $ i n t i f $ i n t c a r p i f ”}”
a l l i f =”{” $ e x t i f $ e x t c a r p i f $ i n t i f $ i n t c a r p i f ”}”

IPs

40

5.4 Gateway

e x t d n s s r v =”{ 1 3 7 . 1 3 8 . 1 6 . 5 , 1 3 7 . 1 3 8 . 1 7 . 5 }”
i n t d n s s r v =”{ 1 0 . 1 6 2 . 4 8 . 1 1 , 1 0 . 1 6 2 . 4 8 . 1 2 , 1 0 . 1 6 2 . 5 0 . 6 1 , 1 0 . 1 6 2 . 5 0 . 6 2 }”
ext gw =”137 .138 .1 .1”

smtp int =”10.162 .50 .78”

h l t p rod =”10.162 .57 .11”

h l t dev =”10.162 .58 .11”

Allowed ICMP−types

icmp types=”{ echorep , echoreq , timex , paramprob , unreach code need f rag }”

Blocked nets

t ab l e <b locked nets> { 1 2 7 . 0 . 0 . 0 / 8 , 1 9 2 . 1 6 8 . 0 . 0 / 1 6 , 1 7 2 . 1 6 . 0 . 0 / 1 2 ,

1 0 . 0 . 0 . 0 / 8 , 1 6 9 . 2 5 4 . 0 . 0 / 1 6 , 1 9 2 . 0 . 2 . 0 / 2 4 , 0 . 0 . 0 . 0 / 8 , 2 4 0 . 0 . 0 . 0 / 4 }

Our networks

o u r i n t n e t =”{ 1 0 . 1 6 2 . 0 . 0 / 1 6 }”
t ab l e <n o t o u r i n t n e t > { ! 1 0 . 1 6 2 . 0 . 0 / 1 6 }

Options and NAT

Packets that are blocked , w i l l be dropped

s e t block−p o l i c y drop

Log th ing s i f s p e c i f i e d in f i l t e r s

s e t l o g i n t e r f a c e $ e x t c a r p i f

Skip f i l t e r i n g on loopback−i n t e r f a c e (s)

s e t sk ip on l o

NAT a l l outgoing connect i ons

match out l og on $ e x t i f i n e t from $ o u r i n t n e t to any nat−to (

$ e x t c a r p i f)

Red i r e c t i on / port−forward

SSH/NX to hlt−prod

pass in quick log on $ e x t i f proto tcp from any to any port 122 rdr−to

$h l t p rod port 22

SSH/NX to hlt−dev

pass in quick log on $ e x t i f proto tcp from any to any port 222 rdr−to

$h l t dev port 22

F i l t e r i n g r u l e s

Defau l t deny

block in log

41

5. IMPLEMENTATION

Spoofed address p r o t e c t i o n

block in quick log from urpf−f a i l e d

Scrub incoming packets

match in a l l scrub (no−df)

Enable pfsync

pass quick log on $ p f s y n c i f proto pfsync keep s t a t e (no−sync)

Enable CARP

pass quick log on { $ e x t i f , $ i n t i f } proto carp keep s t a t e (no−sync)

Block reque s t from out s id e with blocked addre s s e s

b lock in quick log on $ a l l e x t i f from <blocked nets> to any

Block reque s t from i n s i d e to blocked addre s s e s

b lock out quick log on $ a l l e x t i f from any to <blocked nets>

Defau l t pass outgoing

pass out l og keep s t a t e

Pass l o c a l net

Pass everyth ing from l o c a l net

pass in on $ i n t i f from $ o u r i n t n e t

Pass from l o c a l net , b e f o r e b lock

Allow outgoing SMTP from t h i s host

pass in quick log on $ i n t i f i n e t proto { tcp , udp } from $smtp int to any

port smtp

Block from l o c a l net

Allow outgoing SMTP from t h i s host

b lock in log on $ i n t i f i n e t proto { tcp , udp } from any to any port smtp

ICMP

pass in quick i n e t proto icmp a l l icmp−type $icmp types

SSH

pass in quick on $ a l l e x t i f i n e t proto tcp from any to $ a l l e x t i f port

ssh

Listing 5.14: PF-configuration - Configuration of PF filters & rules.

There is still room for improvement in the PF-configuration (stricter rules/filters,

42

5.5 The switchover

etc), however, this gives us a working base-configuration, which can be improved later

on.

One more thing we’d like to do, is to make sure PF keeps it’s logs for more then a

few hours. We should change a few entries in /etc/newsyslog.conf, as shown in Listing

5.15.

In / etc / newsyslog . conf , change the f i l e

/ var / log / pf log−entry to something l i k e

/ var / log / p f l o g 600 100 102400 ∗ ZB ” p k i l l −HUP −u root −U root −t − −x

p f l ogd ”

Listing 5.15: PF-logging - Change how long PF should keep its logs.

5.5 The switchover

After all configuration was done, I decided to move things over from the old network,

to the new network, in three phases. The only thing I needed to do, was to change

the VLAN of the access-ports accordingly. First the management-network, as this

could be done without causing downtime in the cluster. This went rather smoothly,

except that some of the nodes had BMC-cards that only sent DHCP-discover through

a single interface (which, in turn, forced me to change the main interface to the internal

network on these nodes). After testing that it was working as intended, I could move

on to the next step, which was the production-cluster. This also went rather smoothly.

The development-cluster was not moved, since we wanted to reinstall these nodes. This

could not be done before other services in the network was ready (such as PXE-booting

and SVN-repositories containing the node-configuration files).

43

6

Testing

During, and especially after, implementation, we want to test that everything works

according to the plan.

6.1 Network-connectivity

Several network-connectivity tests was performed regularly during the switchover-phases,

to make sure we had connectivity to all nodes. This was mainly done using a hostname-

list, and iterate through it, pinging each host. Example of a typical command, can be

seen in Listing 6.1.

root@portal−ecs1 :˜# f o r host in $ (cat / e t c /dsh/group/ p r o d c l u s t e r) ; do i f !

ping −c1 −w1 $host | grep −q i ” bytes from ” ; then echo ” the host $host

i s unreachable ” ; f i ; done

the host cn010 i s unreachable

the host fephmpid3 i s unreachable

the host fepsdd1 i s unreachable

the host fepsdd5 i s unreachable

the host f e p t o f a 0 8 i s unreachable

Listing 6.1: Verifying working-connectivity - Making sure the network is working.

In most cases, as you could see in Listing 6.1, there was nodes not responding.

Usually, these where hosts that we already knew was offline (due to maintenance).

44

6.2 Network-services

6.2 Network-services

There are several network-services that we rely heavily on. There are three main

network-services that we have discussed.

6.2.1 DHCP

After configuring ’ip helper’ on the core-switches, we want to make sure that the DHCP-

servers gets the requests. This can be done by checking the log-files, as shown in Listing

6.2.

root@ns0 : / e t c / bind# cat / var / l og / s y s l o g | grep ”REQUEST” | grep ” v ia 10” | grep

−v ” f r e e ” | t a i l −3

Jun 9 21 : 01 : 40 ns0 dhcpd : DHCPREQUEST f o r 1 0 . 1 6 2 . 8 2 . 1 0 from 0 0 : 4 0 : dc : f a

: 0 0 : a f v ia 1 0 . 1 6 2 . 6 4 . 4

Jun 9 21 : 03 : 44 ns0 dhcpd : DHCPREQUEST f o r 1 0 . 1 6 2 . 6 4 . 1 2 8 from 00 : e0 : 8 1 : 4 d

: 2 c : 49 v ia 1 0 . 1 6 2 . 6 4 . 2

Jun 9 21 : 16 : 46 ns0 dhcpd : DHCPREQUEST f o r 1 0 . 1 6 2 . 7 2 . 3 4 from 0 0 : 4 0 : dc : f a

: 0 0 : 5 f v ia 1 0 . 1 6 2 . 6 4 . 3

Listing 6.2: Verifying working DHCP - Making sure the DHCP-server gets requests

from other VLANs besides its own.

6.2.2 DNS

DNS was put to test each time we ran the previous ping-tests (since they use host-

names). We also verified it manually several times, both forward and reverse-entries,

as shown in Listing 6.3.

root@portal−ecs1 :˜# dig f e p t o f a 0 2 . i n t e r n a l a +shor t

1 0 . 1 6 2 . 3 2 . 1 3 9

root@portal−ecs1 :˜# dig −x 1 0 . 1 6 2 . 3 2 . 1 3 9 +shor t

f e p t o f a 0 2 . i n t e r n a l .

root@portal−ecs1 :˜# dig a l i h l t −gw . i n t e r n a l a +shor t

1 0 . 1 6 2 . 5 6 . 1 1

root@portal−ecs1 :˜# dig −x 1 0 . 1 6 2 . 5 6 . 1 1 +shor t

a l i h l t −gw . i n t e r n a l .

Listing 6.3: Verifying working DNS - Making sure the DNS-servers is working.

45

6. TESTING

6.2.3 Gateways

Testing of the gateways was not done specifically, as all communication to and from

the cluster is done via the gateway. There was no discovery of services not working, so

there was no immediate need to do any more testing of this.

6.3 Redundancy

Testing of redundancy could only be done after all aspects of the network was imple-

mented (STP, VRRP, CARP, etc).

6.3.1 Edge-switches

Edge-switches had one, two or three cables pulled out in different variations. There

are two links (3x1Gpbs and 1x1Gpbs), and pulling either of these, or just single cables

in the trunk, was tested. Downtime was the little time that STP spends converging

(usually non-noticeable for the clients).

6.3.2 Core-swithces & gateways

I did some failover-tests, which basically included rebooting the master-gateway, and

the master core-switch (sw-core1), in addition to the infra-switch (all at the same time).

The total downtime was 3-4 seconds for the failover, and around 1 second for the pre-

empt (failback). The failover/pre-empt will not cause any issues for users (except that

they might notice a slight ”glitch” – however, it will not disconnect sessions, etc).

The 3-4 seconds for the failover is basically a limitation in how VRRP works; the

master-router has an internal advertisement-timer, where the lowest value is 1 second.

A backup-router will only take over if it doesn’t receive an advertisement for 3x the

advertisement-timer – in other words; a backup-router won’t take over for a failed

master-router before it has gone 3 seconds.

6.3.3 Network-services

Shutting down either of the servers running DNS and DHCP did not affect the service.

However, since both nameservers are on the same switch, we’ll loose DNS-lookups if

the ’sw-infra’-switch fails. Since we’re moving the nameservers to virtual machines,

46

6.3 Redundancy

this issue will be resolved at that point. The solution will simply be to put one of

the virtualization-servers, hosting one of the nameservers, on a different switch than

the virtualization-server that hosts the other nameserver. This actually applies for the

DHCP-servers as well – however, clients won’t loose their IP once they’ve first have it.

47

7

Conclusion

We have built a scalable, stable and fully redundant network, with a working IP-scheme,

and network-services that is easy to manage.

7.1 Fulfilled requirements

All the requirements that the company had, and those we specified extra on this project,

was fulfilled. One can perhaps argue that the separation-requirement hasn’t been ful-

filled, which is somewhat true (it’s separated at layer 2, but not on layer 3), however,

this can easily be fixed using some ACLs, which we’ll talk about below.

7.2 Limitations

There might be limitations in some of the services and/or protocols involved, however,

none has come to our attention. Other than that, there are no known limitations.

7.3 Improvements

There is still lots of improvements that can be done. We can fine-tune many of the

services we’ve implemented. I’ll list those that has come to our mind here.

- Implement separation at layer 3 between production- and development-cluster.

- Implement ACLs to improve security in general. Restrict access to different parts

of the network from certain nodes.

48

7.4 Progress according to plan

- Buy some more switches, so that we have unison model-numbers (that is, buy

3500yl’s to replace 3400cl’s). This makes it easier to replace broken switches, and

do configuration-changes, since the syntax will be the same (which is not the case

now, when we have both 3500yl’s and 3400cl’s).

- Buy some Supermicro Atom-nodes to replace the current gateways, as they don’t

need the processing-power they currently have.

- Buy some Supermicro Atom-nodes to act as gateways between our network, and

the DCS/ECS-networks.

- Script that parses a CSV-file, containing hostname, IP-address and MAC-address,

into configuration-files for DHCP and DNS, so that changes can be done easily.

This way you’d only need to edit one file to change it in both DNS and DHCP.

- More strict PF-rules.

- Fine-tune STP.

- Move network-services over to virtualized machines, with redundancy regarding

switches (two VM’s running on two different physical machines, connected to two

different switches).

- Make some more logic to the PTR-record on the default gateways. Minor de-

tail, but somewhat important since we’re using VRRP (default gateway for the

INFRA-subnet is 10.162.48.1, which has a PTR-record to sw-core1-vlan30.internal.

If sw-core1 goes down, sw-core0 takes over, and then the PTR-record doesn’t make

sense).

7.4 Progress according to plan

All milestones was completed according to the plan.

49

References

[1] A Large Ion Collider Experiment - Wikipedia [on-

line, cited Wednesday, 08. June, 2011]. x

[2] Autonomous system (Internet) - Wikipedia [on-

line, cited Wednesday, 08. June, 2011]. x

[3] Baseboard management controller - Wikipedia

[online, cited Wednesday, 08. June, 2011]. x

[4] Broadcast radiation - Wikipedia [online, cited

Wednesday, 08. June, 2011]. x

[5] PF - Firewall Redundancy with CARP and pfsync

[online, cited Wednesday, 08. June, 2011]. x, xii

[6] Common Address Redundancy Protocol -

Wikipedia [online, cited Wednesday, 08. June, 2011].

x

[7] CERN - Wikipedia [online, cited Wednesday, 08.

June, 2011]. x

[8] The ALICE High Level Trigger [online, cited

Wednesday, 08. June, 2011]. x, xi

[9] Fernadministration CHARM [online, cited Wednes-

day, 08. June, 2011]. x

[10] Dynamic Host Configuration Protocol -

Wikipedia [online, cited Wednesday, 08. June,

2011]. xi

[11] Domain Name System - Wikipedia [online, cited

Wednesday, 08. June, 2011]. xi

[12] EtherLock II Product Family - CMS Technologies

[online, cited Wednesday, 08. June, 2011]. xi

[13] Gateway (telecommunications) - Wikipedia [on-

line, cited Wednesday, 08. June, 2011]. xi

[14] InfiniBand - Wikipedia [online, cited Wednesday, 08.

June, 2011]. xi

[15] IP address - Wikipedia [online, cited Wednesday, 08.

June, 2011]. xi

[16] Intelligent Platform Management Interface -

Wikipedia [online, cited Wednesday, 08. June, 2011].

xi

[17] Internet Systems Consortium - Wikipedia [online,

cited Wednesday, 08. June, 2011]. xi

[18] MAC address - Wikipedia [online, cited Wednesday,

08. June, 2011]. xi

[19] Network address translation - Wikipedia [online,

cited Wednesday, 08. June, 2011]. xii

[20] Switching loop - Wikipedia [online, cited Wednesday,

08. June, 2011]. xii

[21] Node - Definition for Node [online, cited Wednesday,

08. June, 2011]. xii

[22] OSI model - Wikipedia [online, cited Wednesday, 08.

June, 2011]. xii

[23] Open Shortest Path First - Wikipedia [online, cited

Wednesday, 08. June, 2011]. xii

[24] PF (firewall) - Wikipedia [online, cited Wednesday,

08. June, 2011]. xii

[25] Rack unit - Wikipedia [online, cited Wednesday, 08.

June, 2011]. xii

[26] Rootkit - Wikipedia [online, cited Wednesday, 08.

June, 2011]. xiii

[27] Spanning Tree Protocol - Wikipedia [online, cited

Wednesday, 08. June, 2011]. xiii

[28] Subnetwork - Wikipedia [online, cited Wednesday,

08. June, 2011]. xiii

[29] Throughput - Wikipedia [online, cited Wednesday,

08. June, 2011]. xiii

[30] Link aggregation - Wikipedia [online, cited Wednes-

day, 08. June, 2011]. xiii

[31] Time to live - Wikipedia [online, cited Wednesday,

08. June, 2011]. xiii

[32] Virtual LAN - Wikipedia [online, cited Wednesday,

08. June, 2011]. xiii

[33] Virtual Router Redundancy Protocol - Wikipedia

[online, cited Wednesday, 08. June, 2011]. xiv

[34] ProCurve Switch 3400cl-24G (J4905A) [online,

cited Wednesday, 08. June, 2011]. 7

[35] ProCurve 10-GIG Media Flex Module (J8435A)

[online, cited Wednesday, 08. June, 2011]. 7

[36] HP 10GbE X2-SC LR Optic (J8437A) [online, cited

Wednesday, 08. June, 2011]. 7

[37] ProCurve Switch 3400cl-48G (J4906A) [online,

cited Wednesday, 08. June, 2011]. 8

[38] ProCurve Switch 3500yl-48G-PWR (J8693A) [on-

line, cited Wednesday, 08. June, 2011]. 8

[39] Netgear FSM726v2 [online, cited Wednesday, 08.

June, 2011]. 8

[40] HP E3500 Switch Series [online, cited Wednesday, 08.

June, 2011]. 8

[41] HP ProCurve [online, cited Friday, 10. June, 2011].

[42] HP.com [online, cited Friday, 10. June, 2011].

[43] New HLT Wiki [online, cited Friday, 10. June, 2011].

50

http://en.wikipedia.org/wiki/A_Large_Ion_Collider_Experiment
http://en.wikipedia.org/wiki/Autonomous_system_(Internet)
http://en.wikipedia.org/wiki/Baseboard_management_controller
http://en.wikipedia.org/wiki/Broadcast_radiation
http://www.openbsd.org/faq/pf/carp.html
http://en.wikipedia.org/wiki/Common_Address_Redundancy_Protocol
http://en.wikipedia.org/wiki/Common_Address_Redundancy_Protocol
http://en.wikipedia.org/wiki/CERN
http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_HLT.html
http://www.heidelberger-innovationsforum.de/fileadmin/_heidelberger/downloads/Lindenstruth_Universit_t_Heidelberg_Freigabe.pdf
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
http://en.wikipedia.org/wiki/Domain_Name_System
http://www.cmstech.com/products/etherlock/ether_features.html
http://en.wikipedia.org/wiki/Gateway_(telecommunications)
http://en.wikipedia.org/wiki/InfiniBand
http://en.wikipedia.org/wiki/IP_address
http://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
http://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
http://en.wikipedia.org/wiki/Internet_Systems_Consortium
http://en.wikipedia.org/wiki/MAC_address
http://en.wikipedia.org/wiki/Network_address_translation
http://en.wikipedia.org/wiki/Switching_loop
http://compnetworking.about.com/od/itinformationtechnology/l/bldef_node.htm
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/Open_Shortest_Path_First
http://en.wikipedia.org/wiki/PF_(firewall)
http://en.wikipedia.org/wiki/Rack_unit
http://en.wikipedia.org/wiki/Rootkit
http://en.wikipedia.org/wiki/Spanning_Tree_Protocol
http://en.wikipedia.org/wiki/Subnetwork
http://en.wikipedia.org/wiki/Throughput
http://en.wikipedia.org/wiki/Link_aggregation
http://en.wikipedia.org/wiki/Time_to_live
http://en.wikipedia.org/wiki/Virtual_LAN
http://en.wikipedia.org/wiki/Virtual_Router_Redundancy_Protocol
http://h10010.www1.hp.com/wwpc/ca/en/sm/WF06b/12136296-12136298-12136298-12136298-12136308-12136310-29584757.html
http://h10010.www1.hp.com/wwpc/ca/en/sm/WF06b/12136296-12136344-12136344-12136344-12136354-12136356-29584667.html
http://h10010.www1.hp.com/wwpc/ca/en/sm/WF06c/A1-329290-64274-64484-64484-4322501-450137.html
http://h10010.www1.hp.com/wwpc/ca/en/sm/WF06b/12136296-12136298-12136298-12136298-12136308-12136310-29584759.html
http://h10010.www1.hp.com/wwpc/ca/en/sm/WF06b/12136296-12136298-12136298-12136298-12136308-12388318-71606775.html
http://support.netgear.com/app/products/model/a_id/2406
http://h17007.www1.hp.com/us/en/products/switches/HP_E3500_Switch_Series/index.aspx
http://www.procurve.com
http://www.hp.com/
https://espace.cern.ch/alice-hlt/default.aspx

REFERENCES

[44] Old HLT Wiki [online, cited Friday, 10. June, 2011].

[45] cern.jocke.no [online, cited Wednesday, 08. June,

2011].

[46] ALICE - A Large Ion Collider Experiment [online,

cited Wednesday, 08. June, 2011].

[47] PF - The OpenBSD Packet Filter [online, cited

Thursday, 09. June, 2011].

[48] Classful network - Wikipedia [online, cited Thurs-

day, 02. June, 2011].

[49] IPv4 - Wikipedia [online, cited Thursday, 02. June,

2011].

51

https://wiki.kip.uni-heidelberg.de/ti/HLT/index.php/Main_Page
http://cern.jocke.no/
http://aliceinfo.cern.ch/Public/Welcome.html
http://www.openbsd.org/faq/pf/
http://en.wikipedia.org/wiki/Classful_network
http://en.wikipedia.org/wiki/IPv4

Appendix A

Scripts & config

#!/ bin /bash

Var iab l e s

i p s t a r t =”10.162”

ib mac =”99 : 99 : 99 : 99 : 99 : 99”

Switches

rename cn=1

rename fep=0

p r i n t s t u f f =0

g e n e r a t e c o n f i g=1

Remove unwanted f i l e s

rm dhcpd−10.162.∗ 2> /dev/ n u l l

rm db . master ∗ 2> /dev/ n u l l

d i e () {
echo >&2 ”$@”

exit 1

}

increment () {
str ipped hostname =‘echo $new hostname | perl −wple ’ s /(\−) . ? (charm |bmc | ib)

$// ig ’ ‘

i f [−z ” $ last hostname ”] ; then

This i s the f i r s t hostname we ’ re p r o c e s s i n g

las t hostname=”$str ipped hostname ”

f i

52

i f ! echo ” $str ipped hostname ” | grep −qiE ”ˆ $ last hostname$ ” ; then

i nc r ement ip

f i

l a s t hostname=$str ipped hostname

}

i nc r ement ip () {
i f [$ f o u r t h o c t e t −eq 255] ; then

I n c r e a s e th i rd octet , r e s e t f our th

let ” t h i r d o c t e t += 1”

f o u r t h o c t e t=1

e l s e

Just i n c r e a s e four th

let ” f o u r t h o c t e t += 1”

f i

}

g e n e r a t e b i n d s p e c i a l () {
Cal led when we want to i t e r a t e through a f i l e with complete IPs /MACs

$1 = f i l ename

$2 = network name

b ind con f fwd f i l ename=”db . m a s t e r i n t e r n a l $ 2 ”

b i n d c o n f p t r f i l e n a m e=”db . master 10−162−0−0 $2 ”

while read h o s t i n f o ; do

hostname=‘echo ” $ h o s t i n f o ” | cut −d’# ’ −f1 ‘

ip =‘echo ” $ h o s t i n f o ” | cut −d’# ’ −f2 ‘

g ene ra te b ind $hostname $ip

done < $1

}

g e n e r a t e c o n f i g () {
Cal led when we want to generate c o n f i g u r a t i o n

$1 = hostname

$2 = mac

$3 = ip

$4 = i n f i n i h o s t

generate dhcp $1 $2 $3 $4

genera te b ind $1 $3

53

A. SCRIPTS & CONFIG

}

generate dhcp () {
Generate the DHCP−c o n f i g

i f [−z $4] ; then

We don ’ t want i n f i n i h o s t s in the DHCP−c o n f i g

o c t e t 3 =‘echo ”$3 ” | cut −d ’ . ’ −f3 ‘

i f [$ o c t e t 3 −ge 64] && [$ o c t e t 3 − l t 96] ; then

It ’ s CHARM or BMC

echo ” host $1 { hardware e the rne t $2 ; f i xed−address $3 ; }” >>

$dhcp conf f i lename mgmt

e l s e

It ’ s a host

echo ” host $1 { hardware e the rne t $2 ; f i xed−address $3 ; }” >>

$dhcp con f f i l ename

f i

f i

}

genera te b ind () {
Generate the BIND−c o n f i g

o c t e t 3 =‘echo ”$2 ” | cut −d ’ . ’ −f3 ‘

o c t e t 4 =‘echo ”$2 ” | cut −d ’ . ’ −f4 ‘

Generate forward

printf ”%−25s%−5s%−5s%−15s \n” ”$1” ”IN” ”A” ”$2” >>

$b ind con f fwd f i l ename

Generate r e v e r s e

printf ”%−10s%−5s%−10s%−20s \n” ” $ o c t e t 4 . $ o c t e t 3 ” ”IN” ”PTR” ”$1 .

$domain name . ” >> $ b i n d c o n f p t r f i l e n a m e

Generate al ias

i f echo ”$1 ” | grep −qiE ”(bmc | charm) ” ; then

s t r i pped =‘echo ”$1 ” | perl −wple ’ s /\− .?(bmc | charm) // gi ’ ‘

printf ”%−25s%−5s%−10s%−20s \n” ” $str ipped−mgmt” ”IN” ”CNAME” ”$1 .

$domain name . ” >> $ b i n d c o n f a l i a s f i l e n a m e

f i

}

run code () {

54

Var iab l e s

s t a t i c t h i r d o c t e t=$2

t h i r d o c t e t=$ s t a t i c t h i r d o c t e t

f o u r t h o c t e t=$3

i b o f f s e t =”$4”

mgmt of fset=”$5”

cn counter=0

cngpu counter=0

f ep count e r=0

fephost without number=”LOLKEK”

dhcp con f f i l ename=”dhcpd−10.162. $ s t a t i c t h i r d o c t e t . 0 . conf ”

dhcp conf f i lename mgmt=”dhcpd−10 . 162 . 64 . 0 . conf ”

b ind con f fwd f i l ename=”db . m a s t e r i n t e r n a l $ 6 ”

b i n d c o n f p t r f i l e n a m e=”db . master 10−162−0−0 $6 ”

b i n d c o n f a l i a s f i l e n a m e=”db . m a s t e r i n t e r n a l a l i a s ”

domain name=” i n t e r n a l ”

las t hostname=””

while read h o s t i n f o ; do

old hostname =‘echo $ h o s t i n f o | cut −d’# ’ −f 1 | perl −wple ’ s / [\ t]∗//

ig ’ ‘

mac=‘echo $ h o s t i n f o | cut −d’# ’ −f 2 | perl −wple ’ s / [\ t]∗// ig ’ ‘

make new cn∗−host s & IPs

i f echo ” $old hostname ” | grep −q i ”ˆcn ” ; then

i f [$rename cn −eq 1] ; then

i f echo ” $old hostname ” | grep −q i ”ˆcngpu ” ; then

#cngpu∗
hostnumber=‘printf ”%03d” $cngpu counter ‘

new hostname=”cngpu$hostnumber”

i f echo ” $old hostname ” | grep −qiE ”(charm |bmc) $ ” ; then

let ” cngpu counter += 1”

f i

e l i f echo ” $old hostname ” | grep −q i ”ˆ cndev ” ; then

#cndev∗
hostnumber=‘printf ”%03d” $cn counter ‘

new hostname=”cndev$hostnumber”

i f echo ” $old hostname ” | grep −qiE

”(charm |bmc) $ ” ; then

let ” cn counter += 1”

f i

e l s e

#cn∗

55

A. SCRIPTS & CONFIG

hostnumber=‘printf ”%03d” $cn counter ‘

new hostname=”cn$hostnumber”

i f echo ” $old hostname ” | grep −qiE ”(charm |bmc) $ ” ; then

let ” cn counter += 1”

f i

f i

e l s e

new hostname=”$old hostname ”

f i

increment

i n f i n i h o s t =0

i f cat ”hostnames . txt ” | grep −qiE ”” $old hostname ” . ? ib$ ” ; then

#node has i n f i n i b a n d

i n f i n i h o s t =1

ib hostname=””$new hostname”− ib ”

f i

i f echo ” $old hostname ” | grep −qiE ”(charm |bmc) $ ” ; then

i f [$rename cn −eq 1] ; then

i f echo ” $old hostname ” | grep −q i ”charm$ ” ; then

mgmt hostname=”$new hostname−charm”

e l s e

mgmt hostname=”$new hostname−bmc”

f i

e l s e

mgmt hostname=”$old hostname ”

f i

mgmt ip=”$ i p s t a r t . $ (($ t h i r d o c t e t $mgmt of fset)) . $ f o u r t h o c t e t ”

i f [$ p r i n t s t u f f −eq 1] ; then

echo ” $old hostname −> $mgmt hostname ($mac , $mgmt ip) ”

f i

i f [$ g e n e r a t e c o n f i g −eq 1] ; then

g e n e r a t e c o n f i g $mgmt hostname $mac $mgmt ip

f i

e l s e

h o s t i p=”$ i p s t a r t . $ t h i r d o c t e t . $ f o u r t h o c t e t ”

i b i p=”$ i p s t a r t . $ (($ t h i r d o c t e t $ i b o f f s e t)) . $ f o u r t h o c t e t ”

56

i f [$ p r i n t s t u f f −eq 1] ; then

echo ” $old hostname −> $new hostname ($mac , $ h o s t i p) ”

i f [$ i n f i n i h o s t −eq 1] ; then

echo ”” $old hostname”− ib −> $ib hostname (

$ib mac , $ i b i p) ”

f i

f i

i f [$ g e n e r a t e c o n f i g −eq 1] ; then

g e n e r a t e c o n f i g $new hostname $mac $ h o s t i p

i f [$ i n f i n i h o s t −eq 1] ; then

g e n e r a t e c o n f i g $ib hostname $ib mac $ i b i p $ i n f i n i h o s t

f i

f i

f i

make new IPs for f ep∗−host s

e l i f echo ” $old hostname ” | grep −q i ”ˆ fep ” ; then

i f [$rename fep −eq 1] ; then

i f ! echo ” $old hostname ” | grep −q i ” $fephost without number ” ; then

f ephost without number =‘echo $old hostname | sed −e ’ s / [0 −9] .∗// ’ ‘

f ep count e r=0

f i

hostnumber=‘printf ”%03d” $ fep counter ‘

new hostname=”$fephost without number$hostnumber ”

e l s e

new hostname=”$old hostname ”

f i

increment

i n f i n i h o s t =0

i f cat ”hostnames . txt ” | grep −qiE ”” $old hostname ” . ? ib$ ” ; then

#node has i n f i n i b a n d

i n f i n i h o s t =1

ib hostname=””$new hostname”− ib ”

f i

i f echo ” $old hostname ” | grep −qiE ”(charm |bmc) $ ” ; then

i f [$rename fep −eq 1] ; then

57

A. SCRIPTS & CONFIG

i f echo ” $old hostname ” | grep −q i ”charm$ ” ;

then

mgmt hostname=”$new hostname−charm”

e l s e

mgmt hostname=”$new hostname−bmc”

f i

let ” f ep count e r += 1”

e l s e

mgmt hostname=”$old hostname ”

f i

mgmt ip=”$ i p s t a r t . $ (($ t h i r d o c t e t $mgmt of fset)) . $ f o u r t h o c t e t ”

i f [$ p r i n t s t u f f −eq 1] ; then

echo ” $old hostname −> $mgmt hostname ($mac , $mgmt ip) ”

f i

i f [$ g e n e r a t e c o n f i g −eq 1] ; then

g e n e r a t e c o n f i g $mgmt hostname $mac

$mgmt ip

f i

e l s e

h o s t i p=”$ i p s t a r t . $ t h i r d o c t e t . $ f o u r t h o c t e t ”

i b i p=”$ i p s t a r t . $ (($ t h i r d o c t e t $ i b o f f s e t)) .

$ f o u r t h o c t e t ”

i f [$ p r i n t s t u f f −eq 1] ; then

echo ” $old hostname −> $new hostname (

$mac , $ h o s t i p) ”

i f [$ i n f i n i h o s t −eq 1] ; then

echo ”” $old hostname”− ib −>
$ib hostname ($ib mac ,

$ i b i p) ”

f i

f i

i f [$ g e n e r a t e c o n f i g −eq 1] ; then

g e n e r a t e c o n f i g $new hostname $mac

$ h o s t i p

i f [$ i n f i n i h o s t −eq 1] ; then

g e n e r a t e c o n f i g $ib hostname

$ib mac $ i b i p $ i n f i n i h o s t

f i

58

f i

f i

e l s e

Everything e l s e

new hostname=”$old hostname ”

increment

i n f i n i h o s t =0

i f cat ”hostnames . txt ” | grep −qiE ”” $new hostname ” . ? ib$ ” ;

then

#node has i n f i n i b a n d

i n f i n i h o s t =1

ib hostname=””$new hostname”− ib ”

f i

i f echo ” $old hostname ” | grep −qiE ”(charm |bmc) $ ” ; then

mgmt hostname=”$old hostname ”

mgmt ip=”$ i p s t a r t . $ (($ t h i r d o c t e t $mgmt of fset)

) . $ f o u r t h o c t e t ”

i f [$ p r i n t s t u f f −eq 1] ; then

echo ” $old hostname −> $mgmt hostname (

$mac , $mgmt ip) ”

f i

i f [$ g e n e r a t e c o n f i g −eq 1] ; then

g e n e r a t e c o n f i g $mgmt hostname $mac

$mgmt ip

f i

e l s e

h o s t i p=”$ i p s t a r t . $ t h i r d o c t e t . $ f o u r t h o c t e t ”

i b i p=”$ i p s t a r t . $ (($ t h i r d o c t e t $ i b o f f s e t)) .

$ f o u r t h o c t e t ”

i f [$ p r i n t s t u f f −eq 1] ; then

echo ” $old hostname −> $new hostname (

$mac , $ h o s t i p) ”

i f [$ i n f i n i h o s t −eq 1] ; then

echo ”” $old hostname”− ib −>
$ib hostname ($ib mac ,

$ i b i p) ”

59

A. SCRIPTS & CONFIG

f i

f i

i f [$ g e n e r a t e c o n f i g −eq 1] ; then

g e n e r a t e c o n f i g $new hostname $mac

$ h o s t i p

i f [$ i n f i n i h o s t −eq 1] ; then

g e n e r a t e c o n f i g $ib hostname

$ib mac $ i b i p $ i n f i n i h o s t

f i

f i

f i

f i

done < $1

}

run code

$1 = f i l ename

$2 = t h i r d o c t e t

$3 = four th oc t e t

$4 = i b o f f s e t

$5 = mgmt of fset

%6 = network name

run code va l id−hosts−prod . txt 32 11 ”− 32” ”+ 32” ”prod”

#run code va l id−hosts−vm. txt 52 11 ”+ 0” ”+ 0” ”vm”

S p e c i a l

SWITCH−MGMT

g e n e r a t e b i n d s p e c i a l va l id−hosts−switch . txt ” switch ”

rename cn=0

run code va l id−hosts−dev . txt 40 11 ”− 32” ”+ 32” ”dev”

Listing A.1: Generate DHCP and DNS configuration-files - The script used to

generate DNS and DHCP configuration-files from the CSV-file.

hostname ”sw−core1 ”

max−v lans 20

time timezone 60

time day l ight−time−r u l e Middle−Europe−and−Portugal

module 1 type J86yyA

module 2 type J86xxA

no stack

60

trunk 1−8 Trk2 LACP

trunk 9−16 Trk3 LACP

trunk 41−47 Trk4 LACP

trunk 17−18 Trk11 LACP

trunk 19−21 Trk27 LACP

trunk 22−24 Trk28 LACP

trunk 25−27 Trk29 LACP

trunk 28−30 Trk30 LACP

trunk 31−33 Trk31 LACP

ip rout ing

ip udp−bcast−forward

vlan 1

name ”DISABLED”

f o r b i d 34−40 ,48 ,Trk2−Trk4 , Trk11 , Trk27−Trk31

no untagged 34−40 ,48 ,Trk2−Trk4 , Trk11 , Trk27−Trk31

no ip address

e x i t

vlan 5

name ”NOT−AUTHORIZED”

untagged 48

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip address 1 0 . 1 6 2 . 6 1 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 34−40 ,Trk2−Trk4 , Trk11 , Trk27−Trk31

e x i t

vlan 10

name ”PROD”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 3 2 . 1 2 5 5 . 2 5 5 . 2 4 8 . 0

tagged 34−40 ,Trk2−Trk4 , Trk11 , Trk27−Trk31

ip igmp

e x i t

vlan 20

name ”DEV”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 4 0 . 1 2 5 5 . 2 5 5 . 2 4 8 . 0

tagged 34−40 ,Trk2−Trk4 , Trk11 , Trk27−Trk31

ip igmp

e x i t

61

A. SCRIPTS & CONFIG

vlan 30

name ”INFRA”

ip address 1 0 . 1 6 2 . 4 8 . 1 2 5 5 . 2 5 5 . 2 5 2 . 0

tagged 34−40 ,Trk2−Trk4 , Trk11 , Trk27−Trk31

ip igmp

e x i t

vlan 40

name ”VM”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 2 . 1 2 5 5 . 2 5 5 . 2 5 2 . 0

tagged 34−40 ,Trk2−Trk4 , Trk11 , Trk27−Trk31

ip igmp

e x i t

vlan 50

name ”GW”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 6 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 34−40 ,Trk2−Trk4 , Trk11 , Trk27−Trk31

ip igmp

e x i t

vlan 60

name ”LOGIN−PROD”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 7 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 34−40 ,Trk2−Trk4 , Trk11 , Trk27−Trk31

ip igmp

e x i t

vlan 70

name ”LOGIN−DEV”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 8 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 34−40 ,Trk2−Trk4 , Trk11 , Trk27−Trk31

ip igmp

62

e x i t

vlan 80

name ”SWITCH−MGMT”

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 6 0 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 34−40 ,Trk2−Trk4 , Trk11 , Trk27−Trk31

ip igmp

e x i t

vlan 90

name ”MGMT”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 6 4 . 1 2 5 5 . 2 5 5 . 2 2 4 . 0

tagged 34−40 ,Trk2−Trk4 , Trk11 , Trk27−Trk31

ip igmp

e x i t

vlan 100

name ”ADMIN”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 9 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 34−40 ,Trk2−Trk4 , Trk11 , Trk27−Trk31

ip igmp

e x i t

vlan 200

name ”TEMP”

tagged 34−40 ,Trk2−Trk4 , Trk11 , Trk27−Trk31

no ip address

e x i t

t imesync sntp

sntp un i ca s t

sntp 30

sntp s e r v e r p r i o r i t y 1 1 0 . 1 6 2 . 5 0 . 7 0

ip dns domain−name ” i n t e r n a l ”

ip dns se rver−address p r i o r i t y 1 1 0 . 1 6 2 . 4 8 . 1 1

ip dns se rver−address p r i o r i t y 2 1 0 . 1 6 2 . 4 8 . 1 2

ip route 0 . 0 . 0 . 0 0 . 0 . 0 . 0 1 0 . 1 6 2 . 5 6 . 1 1

ip route 1 0 . 1 6 2 . 0 . 0 2 5 5 . 2 5 5 . 2 2 4 . 0 r e j e c t

ip router−id 1 0 . 1 6 2 . 6 0 . 2 5 4

ip mult i cas t−rout ing

63

A. SCRIPTS & CONFIG

route r o sp f

area backbone

r e d i s t r i b u t e s t a t i c

e x i t

route r pim

e x i t

route r vrrp

i n t e r f a c e loopback 0

ip address 1 0 . 1 6 2 . 6 0 . 2 5 4

e x i t

snmp−s e r v e r community ” pub l i c ”

spanning−t r e e

spanning−t r e e Trk2 path−co s t 5000

spanning−t r e e Trk2 p r i o r i t y 2

spanning−t r e e Trk3 path−co s t 5000

spanning−t r e e Trk3 p r i o r i t y 2

spanning−t r e e Trk4 path−co s t 6000

spanning−t r e e Trk4 p r i o r i t y 4

spanning−t r e e Trk11 path−co s t 10000

spanning−t r e e Trk11 p r i o r i t y 4

spanning−t r e e Trk27 path−co s t 8000

spanning−t r e e Trk27 p r i o r i t y 4

spanning−t r e e Trk28 path−co s t 8000

spanning−t r e e Trk28 p r i o r i t y 4

spanning−t r e e Trk29 path−co s t 8000

spanning−t r e e Trk29 p r i o r i t y 4

spanning−t r e e Trk30 path−co s t 8000

spanning−t r e e Trk30 p r i o r i t y 4

spanning−t r e e Trk31 path−co s t 8000

spanning−t r e e Trk31 p r i o r i t y 4

spanning−t r e e p r i o r i t y 1

vlan 5

ip osp f 1 0 . 1 6 2 . 6 1 . 1 area backbone

vrrp vr id 5

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 1 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 10

ip osp f 1 0 . 1 6 2 . 3 2 . 1 area backbone

ip pim−dense

ip−addr any

e x i t

64

vrrp vr id 10

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 3 2 . 1 2 5 5 . 2 5 5 . 2 4 8 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 20

ip osp f 1 0 . 1 6 2 . 4 0 . 1 area backbone

ip pim−dense

ip−addr any

e x i t

vrrp vr id 20

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 4 0 . 1 2 5 5 . 2 5 5 . 2 4 8 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 30

ip osp f 1 0 . 1 6 2 . 4 8 . 1 area backbone

ip pim−dense

ip−addr any

e x i t

vrrp vr id 30

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 4 8 . 1 2 5 5 . 2 5 5 . 2 5 2 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 40

ip osp f 1 0 . 1 6 2 . 5 2 . 1 area backbone

ip pim−dense

ip−addr any

e x i t

vrrp vr id 40

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 2 . 1 2 5 5 . 2 5 5 . 2 5 2 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 50

ip osp f 1 0 . 1 6 2 . 5 6 . 1 area backbone

65

A. SCRIPTS & CONFIG

ip pim−dense

ip−addr any

e x i t

vrrp vr id 50

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 6 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 60

ip osp f 1 0 . 1 6 2 . 5 7 . 1 area backbone

ip pim−dense

ip−addr any

e x i t

vrrp vr id 60

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 7 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 70

ip osp f 1 0 . 1 6 2 . 5 8 . 1 area backbone

ip pim−dense

ip−addr any

e x i t

vrrp vr id 70

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 8 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 80

ip osp f 1 0 . 1 6 2 . 6 0 . 1 area backbone

vrrp vr id 80

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 0 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 90

ip osp f 1 0 . 1 6 2 . 6 4 . 1 area backbone

66

ip pim−dense

ip−addr any

e x i t

vrrp vr id 90

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 4 . 1 2 5 5 . 2 5 5 . 2 2 4 . 0

p r i o r i t y 255

enable

e x i t

e x i t

vlan 100

ip osp f 1 0 . 1 6 2 . 5 9 . 1 area backbone

ip pim−dense

ip−addr any

e x i t

vrrp vr id 100

owner

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 9 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 255

enable

e x i t

e x i t

Listing A.2: Current sw-core1 config - This is the current configuration of sw-core1.

hostname ”sw−core0 ”

max−v lans 20

time timezone 60

time day l ight−time−r u l e Middle−Europe−and−Portugal

module 1 type J86yyA

module 2 type J86xxA

no stack

i n t e r f a c e 40

name ” desk ”

e x i t

trunk 1−8 Trk1 LACP

trunk 9−16 Trk2 LACP

trunk 17−18 Trk10 LACP

trunk 19−21 Trk20 LACP

trunk 22−24 Trk21 LACP

trunk 25−27 Trk22 LACP

trunk 28−30 Trk23 LACP

trunk 31−33 Trk24 LACP

trunk 34−36 Trk25 LACP

trunk 37−39 Trk26 LACP

67

A. SCRIPTS & CONFIG

ip de fau l t−gateway 1 0 . 1 6 2 . 6 0 . 1

ip rout ing

vlan 1

name ”DISABLED”

f o r b i d 40−48 ,Trk1−Trk2 , Trk10 , Trk20−Trk26

no untagged 40−48 ,Trk1−Trk2 , Trk10 , Trk20−Trk26

no ip address

e x i t

vlan 5

name ”NOT−AUTHORIZED”

untagged 41

ip address 1 0 . 1 6 2 . 6 1 . 2 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 42−48 ,Trk1−Trk2 , Trk10 , Trk20−Trk26

e x i t

vlan 10

name ”PROD”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 3 2 . 2 2 5 5 . 2 5 5 . 2 4 8 . 0

tagged 42−48 ,Trk1−Trk2 , Trk10 , Trk20−Trk26

ip igmp

e x i t

vlan 30

name ”INFRA”

ip address 1 0 . 1 6 2 . 4 8 . 2 2 5 5 . 2 5 5 . 2 5 2 . 0

tagged 42−48 ,Trk1−Trk2 , Trk10 , Trk20−Trk26

ip igmp

e x i t

vlan 40

name ”VM”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 2 . 2 2 5 5 . 2 5 5 . 2 5 2 . 0

tagged 42−48 ,Trk1−Trk2 , Trk10 , Trk20−Trk26

ip igmp

e x i t

vlan 50

name ”GW”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

68

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 6 . 2 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 42−48 ,Trk1−Trk2 , Trk10 , Trk20−Trk26

ip igmp

e x i t

vlan 60

name ”LOGIN−PROD”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 7 . 2 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 42−48 ,Trk1−Trk2 , Trk10 , Trk20−Trk26

ip igmp

e x i t

vlan 70

name ”LOGIN−DEV”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 8 . 2 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 42−48 ,Trk1−Trk2 , Trk10 , Trk20−Trk26

ip igmp

e x i t

vlan 80

name ”SWITCH−MGMT”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 6 0 . 2 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 42−48 ,Trk1−Trk2 , Trk10 , Trk20−Trk26

ip igmp

e x i t

vlan 90

name ”MGMT”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 6 4 . 2 2 5 5 . 2 5 5 . 2 2 4 . 0

tagged 42−48 ,Trk1−Trk2 , Trk10 , Trk20−Trk26

ip igmp

e x i t

69

A. SCRIPTS & CONFIG

vlan 100

name ”ADMIN”

untagged 40

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 9 . 2 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 42−48 ,Trk1−Trk2 , Trk10 , Trk20−Trk26

ip igmp

e x i t

vlan 200

name ”TEMP”

tagged 42−48 ,Trk1−Trk2 , Trk10 , Trk20−Trk26

no ip address

e x i t

vlan 20

name ”DEV”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 4 0 . 2 2 5 5 . 2 5 5 . 2 4 8 . 0

tagged 42−48 ,Trk1−Trk2 , Trk10 , Trk20−Trk26

ip igmp

e x i t

t imesync sntp

sntp un i ca s t

sntp 30

sntp s e r v e r p r i o r i t y 1 1 0 . 1 6 2 . 5 0 . 7 0

ip dns domain−name ” i n t e r n a l ”

ip dns se rver−address p r i o r i t y 1 1 0 . 1 6 2 . 4 8 . 1 1

ip dns se rver−address p r i o r i t y 2 1 0 . 1 6 2 . 4 8 . 1 2

ip route 0 . 0 . 0 . 0 0 . 0 . 0 . 0 1 0 . 1 6 2 . 5 6 . 1 1 d i s t ance 10

ip route 1 0 . 1 6 2 . 0 . 0 2 5 5 . 2 5 5 . 2 2 4 . 0 r e j e c t d i s t anc e 10

ip router−id 1 0 . 1 6 2 . 6 0 . 2 5 3

ip mult i cas t−rout ing

route r o sp f

area backbone

r e d i s t r i b u t e s t a t i c

e x i t

route r pim

e x i t

route r vrrp

i n t e r f a c e loopback 0

70

ip address 1 0 . 1 6 2 . 6 0 . 2 5 3

e x i t

snmp−s e r v e r community ” pub l i c ”

spanning−t r e e

spanning−t r e e 42 path−co s t 20000

spanning−t r e e 43 path−co s t 20000

spanning−t r e e 44 path−co s t 20000

spanning−t r e e 45 path−co s t 20000

spanning−t r e e 46 path−co s t 20000

spanning−t r e e 47 path−co s t 20000

spanning−t r e e 48 path−co s t 20000

spanning−t r e e Trk1 path−co s t 5000

spanning−t r e e Trk1 p r i o r i t y 3

spanning−t r e e Trk2 path−co s t 5000

spanning−t r e e Trk2 p r i o r i t y 2

spanning−t r e e Trk10 path−co s t 10000

spanning−t r e e Trk10 p r i o r i t y 4

spanning−t r e e Trk20 path−co s t 8000

spanning−t r e e Trk20 p r i o r i t y 4

spanning−t r e e Trk21 path−co s t 8000

spanning−t r e e Trk21 p r i o r i t y 4

spanning−t r e e Trk22 path−co s t 8000

spanning−t r e e Trk22 p r i o r i t y 4

spanning−t r e e Trk23 path−co s t 8000

spanning−t r e e Trk23 p r i o r i t y 4

spanning−t r e e Trk24 path−co s t 8000

spanning−t r e e Trk24 p r i o r i t y 4

spanning−t r e e Trk25 path−co s t 8000

spanning−t r e e Trk25 p r i o r i t y 4

spanning−t r e e Trk26 path−co s t 8000

spanning−t r e e Trk26 p r i o r i t y 4

spanning−t r e e p r i o r i t y 2

vlan 5

ip osp f 1 0 . 1 6 2 . 6 1 . 2 area backbone

ip osp f 1 0 . 1 6 2 . 6 1 . 2 p r i o r i t y 2

vrrp vr id 5

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 1 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 250

enable

e x i t

e x i t

vlan 10

ip osp f 1 0 . 1 6 2 . 3 2 . 2 area backbone

ip osp f 1 0 . 1 6 2 . 3 2 . 2 p r i o r i t y 2

71

A. SCRIPTS & CONFIG

vrrp vr id 10

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 3 2 . 1 2 5 5 . 2 5 5 . 2 4 8 . 0

p r i o r i t y 250

enable

e x i t

e x i t

vlan 20

ip osp f 1 0 . 1 6 2 . 4 0 . 2 area backbone

ip osp f 1 0 . 1 6 2 . 4 0 . 2 p r i o r i t y 2

vrrp vr id 20

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 4 0 . 1 2 5 5 . 2 5 5 . 2 4 8 . 0

p r i o r i t y 250

enable

e x i t

e x i t

vlan 30

ip osp f 1 0 . 1 6 2 . 4 8 . 2 area backbone

ip osp f 1 0 . 1 6 2 . 4 8 . 2 p r i o r i t y 2

vrrp vr id 30

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 4 8 . 1 2 5 5 . 2 5 5 . 2 5 2 . 0

p r i o r i t y 250

enable

e x i t

e x i t

vlan 40

ip osp f 1 0 . 1 6 2 . 5 2 . 2 area backbone

ip osp f 1 0 . 1 6 2 . 5 2 . 2 p r i o r i t y 2

vrrp vr id 40

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 2 . 1 2 5 5 . 2 5 5 . 2 5 2 . 0

p r i o r i t y 250

enable

e x i t

e x i t

vlan 50

ip osp f 1 0 . 1 6 2 . 5 6 . 2 area backbone

ip osp f 1 0 . 1 6 2 . 5 6 . 2 p r i o r i t y 2

vrrp vr id 50

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 6 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 250

enable

72

e x i t

e x i t

vlan 60

ip osp f 1 0 . 1 6 2 . 5 7 . 2 area backbone

ip osp f 1 0 . 1 6 2 . 5 7 . 2 p r i o r i t y 2

vrrp vr id 60

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 7 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 250

enable

e x i t

e x i t

vlan 70

ip osp f 1 0 . 1 6 2 . 5 8 . 2 area backbone

ip osp f 1 0 . 1 6 2 . 5 8 . 2 p r i o r i t y 2

vrrp vr id 70

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 8 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 250

enable

e x i t

e x i t

vlan 80

ip osp f 1 0 . 1 6 2 . 6 0 . 2 area backbone

ip osp f 1 0 . 1 6 2 . 6 0 . 2 p r i o r i t y 2

vrrp vr id 80

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 0 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 250

enable

e x i t

e x i t

vlan 90

ip osp f 1 0 . 1 6 2 . 6 4 . 2 area backbone

ip osp f 1 0 . 1 6 2 . 6 4 . 2 p r i o r i t y 2

vrrp vr id 90

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 4 . 1 2 5 5 . 2 5 5 . 2 2 4 . 0

p r i o r i t y 250

enable

e x i t

e x i t

vlan 100

ip osp f 1 0 . 1 6 2 . 5 9 . 2 area backbone

ip osp f 1 0 . 1 6 2 . 5 9 . 2 p r i o r i t y 2

73

A. SCRIPTS & CONFIG

vrrp vr id 100

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 9 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 250

enable

e x i t

e x i t

Listing A.3: Current sw-core0 config - This is the current configuration of sw-core0.

hostname ”sw−core2 ”

max−v lans 20

time timezone 60

time day l ight−time−r u l e Middle−Europe−and−Portugal

ip access− l i s t extended ”GPN−MGMT−IN”

100 permit tcp 1 0 . 1 6 2 . 6 2 . 1 1 0 . 0 . 0 . 0 1 0 . 1 6 2 . 0 . 0 0 . 0 . 2 5 5 . 2 5 5 e s t a b l i s h e d

110 permit udp 1 0 . 1 6 2 . 6 2 . 1 1 0 . 0 . 0 . 0 1 0 . 1 6 2 . 0 . 0 0 . 0 . 2 5 5 . 2 5 5

120 permit icmp 1 0 . 1 6 2 . 6 2 . 1 1 0 . 0 . 0 . 0 1 0 . 1 6 2 . 0 . 0 0 . 0 . 2 5 5 . 2 5 5 0

1000 deny ip 0 . 0 . 0 . 0 255 . 255 . 255 . 255 0 . 0 . 0 . 0 255 . 255 . 255 . 255

e x i t

module 1 type J86yyA

module 2 type J86xxA

no stack

i n t e r f a c e 39

ip access−group ”GPN−MGMT−IN” in

e x i t

trunk 1−8 Trk1 LACP

trunk 9−16 Trk3 LACP

trunk 17−18 Trk12 LACP

trunk 37−38 Trk15 LACP

trunk 19−21 Trk32 LACP

trunk 22−24 Trk33 LACP

trunk 25−27 Trk34 LACP

trunk 28−30 Trk35 LACP

trunk 31−33 Trk36 LACP

trunk 34−36 Trk37 LACP

ip de fau l t−gateway 1 0 . 1 6 2 . 6 0 . 1

ip rout ing

vlan 1

name ”DISABLED”

f o r b i d 39 ,41−48 ,Trk1 , Trk3 , Trk12 , Trk15 , Trk32−Trk37

no untagged 39−48 ,Trk1 , Trk3 , Trk12 , Trk15 , Trk32−Trk37

no ip address

e x i t

vlan 5

74

name ”NOT−AUTHORIZED”

untagged 40−43

ip address 1 0 . 1 6 2 . 6 1 . 3 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 44−48 ,Trk1 , Trk3 , Trk12 , Trk32−Trk37

e x i t

vlan 10

name ”PROD”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 3 2 . 3 2 5 5 . 2 5 5 . 2 4 8 . 0

tagged 44−48 ,Trk1 , Trk3 , Trk12 , Trk32−Trk37

ip igmp

e x i t

vlan 20

name ”DEV”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 4 0 . 3 2 5 5 . 2 5 5 . 2 4 8 . 0

tagged 44−48 ,Trk1 , Trk3 , Trk12 , Trk32−Trk37

ip igmp

e x i t

vlan 30

name ”INFRA”

ip address 1 0 . 1 6 2 . 4 8 . 3 2 5 5 . 2 5 5 . 2 5 2 . 0

tagged 44−48 ,Trk1 , Trk3 , Trk12 , Trk32−Trk37

ip igmp

e x i t

vlan 40

name ”VM”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 2 . 3 2 5 5 . 2 5 5 . 2 5 2 . 0

tagged 44−48 ,Trk1 , Trk3 , Trk12 , Trk32−Trk37

ip igmp

e x i t

vlan 50

name ”GW”

untagged Trk15

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

75

A. SCRIPTS & CONFIG

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 6 . 3 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 44−48 ,Trk1 , Trk3 , Trk12 , Trk32−Trk37

ip igmp

e x i t

vlan 60

name ”LOGIN−PROD”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 7 . 3 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 44−48 ,Trk1 , Trk3 , Trk12 , Trk32−Trk37

ip igmp

e x i t

vlan 70

name ”LOGIN−DEV”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 8 . 3 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 44−48 ,Trk1 , Trk3 , Trk12 , Trk32−Trk37

ip igmp

e x i t

vlan 80

name ”SWITCH−MGMT”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 6 0 . 3 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 44−48 ,Trk1 , Trk3 , Trk12 , Trk32−Trk37

ip igmp

e x i t

vlan 90

name ”MGMT”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 6 4 . 3 2 5 5 . 2 5 5 . 2 2 4 . 0

tagged 44−48 ,Trk1 , Trk3 , Trk12 , Trk32−Trk37

76

ip igmp

e x i t

vlan 100

name ”ADMIN”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 9 . 3 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 44−48 ,Trk1 , Trk3 , Trk12 , Trk32−Trk37

ip igmp

e x i t

vlan 200

name ”TEMP”

tagged 44−48 ,Trk1 , Trk3 , Trk12 , Trk32−Trk37

no ip address

e x i t

vlan 120

name ”GPN−MGMT”

untagged 39

ip address 1 0 . 1 6 2 . 6 2 . 3 2 5 5 . 2 5 5 . 2 5 5 . 0

e x i t

l ogg ing 1 0 . 1 6 2 . 5 0 . 7 2

l ogg ing s e v e r i t y i n f o

timesync sntp

sntp un i ca s t

sntp 30

sntp s e r v e r p r i o r i t y 1 1 0 . 1 6 2 . 5 0 . 7 0

ip dns domain−name ” i n t e r n a l ”

ip dns se rver−address p r i o r i t y 1 1 0 . 1 6 2 . 4 8 . 1 1

ip dns se rver−address p r i o r i t y 2 1 0 . 1 6 2 . 4 8 . 1 2

ip route 0 . 0 . 0 . 0 0 . 0 . 0 . 0 1 0 . 1 6 2 . 5 6 . 1 1 d i s t ance 20

ip route 1 0 . 1 6 2 . 0 . 0 2 5 5 . 2 5 5 . 2 2 4 . 0 r e j e c t d i s t anc e 20

ip router−id 1 0 . 1 6 2 . 6 0 . 2 5 2

ip mult i cas t−rout ing

route r o sp f

area backbone

r e d i s t r i b u t e s t a t i c

e x i t

route r pim

e x i t

route r vrrp

i n t e r f a c e loopback 0

ip address 1 0 . 1 6 2 . 6 0 . 2 5 2

e x i t

77

A. SCRIPTS & CONFIG

snmp−s e r v e r community ” pub l i c ”

spanning−t r e e

spanning−t r e e Trk1 path−co s t 5000

spanning−t r e e Trk1 p r i o r i t y 3

spanning−t r e e Trk3 path−co s t 5000

spanning−t r e e Trk3 p r i o r i t y 2

spanning−t r e e Trk12 path−co s t 10000

spanning−t r e e Trk12 p r i o r i t y 4

spanning−t r e e Trk15 p r i o r i t y 4

spanning−t r e e Trk32 path−co s t 8000

spanning−t r e e Trk32 p r i o r i t y 4

spanning−t r e e Trk33 path−co s t 8000

spanning−t r e e Trk33 p r i o r i t y 4

spanning−t r e e Trk34 path−co s t 8000

spanning−t r e e Trk34 p r i o r i t y 4

spanning−t r e e Trk35 path−co s t 8000

spanning−t r e e Trk35 p r i o r i t y 4

spanning−t r e e Trk36 path−co s t 8000

spanning−t r e e Trk36 p r i o r i t y 4

spanning−t r e e Trk37 path−co s t 8000

spanning−t r e e Trk37 p r i o r i t y 4

spanning−t r e e p r i o r i t y 3

vlan 5

ip osp f 1 0 . 1 6 2 . 6 1 . 3 area backbone

ip osp f 1 0 . 1 6 2 . 6 1 . 3 p r i o r i t y 3

vrrp vr id 5

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 1 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 240

enable

e x i t

e x i t

vlan 10

ip osp f 1 0 . 1 6 2 . 3 2 . 3 area backbone

ip osp f 1 0 . 1 6 2 . 3 2 . 3 p r i o r i t y 3

vrrp vr id 10

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 3 2 . 1 2 5 5 . 2 5 5 . 2 4 8 . 0

p r i o r i t y 240

enable

e x i t

e x i t

vlan 20

ip osp f 1 0 . 1 6 2 . 4 0 . 3 area backbone

ip osp f 1 0 . 1 6 2 . 4 0 . 3 p r i o r i t y 3

78

vrrp vr id 20

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 4 0 . 1 2 5 5 . 2 5 5 . 2 4 8 . 0

p r i o r i t y 240

enable

e x i t

e x i t

vlan 30

ip osp f 1 0 . 1 6 2 . 4 8 . 3 area backbone

ip osp f 1 0 . 1 6 2 . 4 8 . 3 p r i o r i t y 3

vrrp vr id 30

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 4 8 . 1 2 5 5 . 2 5 5 . 2 5 2 . 0

p r i o r i t y 240

enable

e x i t

e x i t

vlan 40

ip osp f 1 0 . 1 6 2 . 5 2 . 3 area backbone

ip osp f 1 0 . 1 6 2 . 5 2 . 3 p r i o r i t y 3

vrrp vr id 40

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 2 . 1 2 5 5 . 2 5 5 . 2 5 2 . 0

p r i o r i t y 240

enable

e x i t

e x i t

vlan 50

ip osp f 1 0 . 1 6 2 . 5 6 . 3 area backbone

ip osp f 1 0 . 1 6 2 . 5 6 . 3 p r i o r i t y 3

vrrp vr id 50

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 6 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 240

enable

e x i t

e x i t

vlan 60

ip osp f 1 0 . 1 6 2 . 5 7 . 3 area backbone

ip osp f 1 0 . 1 6 2 . 5 7 . 3 p r i o r i t y 3

vrrp vr id 60

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 7 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 240

enable

79

A. SCRIPTS & CONFIG

e x i t

e x i t

vlan 70

ip osp f 1 0 . 1 6 2 . 5 8 . 3 area backbone

ip osp f 1 0 . 1 6 2 . 5 8 . 3 p r i o r i t y 3

vrrp vr id 70

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 8 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 240

enable

e x i t

e x i t

vlan 80

ip osp f 1 0 . 1 6 2 . 6 0 . 3 area backbone

ip osp f 1 0 . 1 6 2 . 6 0 . 3 p r i o r i t y 3

vrrp vr id 80

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 0 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 240

enable

e x i t

e x i t

vlan 90

ip osp f 1 0 . 1 6 2 . 6 4 . 3 area backbone

ip osp f 1 0 . 1 6 2 . 6 4 . 3 p r i o r i t y 3

vrrp vr id 90

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 4 . 1 2 5 5 . 2 5 5 . 2 2 4 . 0

p r i o r i t y 240

enable

e x i t

e x i t

vlan 100

ip osp f 1 0 . 1 6 2 . 5 9 . 3 area backbone

ip osp f 1 0 . 1 6 2 . 5 9 . 3 p r i o r i t y 3

vrrp vr id 100

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 9 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 240

enable

e x i t

e x i t

vlan 120

ip osp f 1 0 . 1 6 2 . 6 2 . 3 area backbone

ip osp f 1 0 . 1 6 2 . 6 2 . 3 p r i o r i t y 3

80

e x i t

Listing A.4: Current sw-core2 config - This is the current configuration of sw-core2.

hostname ”sw−mgmt”

max−v lans 20

time timezone 60

time day l ight−time−r u l e Middle−Europe−and−Portugal

module 1 type J86yyA

module 2 type J86xxA

no stack

trunk 1−2 Trk10 LACP

trunk 3−4 Trk11 LACP

trunk 5−6 Trk12 LACP

ip de fau l t−gateway 1 0 . 1 6 2 . 6 0 . 3

ip rout ing

ip udp−bcast−forward

vlan 1

name ”DISABLED”

f o r b i d 7−48,Trk10−Trk12

no untagged 7−48,Trk10−Trk12

no ip address

e x i t

vlan 5

name ”NOT−AUTHORIZED”

untagged 46−48

ip address 1 0 . 1 6 2 . 6 1 . 4 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged Trk10−Trk12

e x i t

vlan 10

name ”PROD”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 3 2 . 4 2 5 5 . 2 5 5 . 2 4 8 . 0

tagged Trk10−Trk12

ip igmp

e x i t

vlan 20

name ”DEV”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

81

A. SCRIPTS & CONFIG

ip address 1 0 . 1 6 2 . 4 0 . 4 2 5 5 . 2 5 5 . 2 4 8 . 0

tagged Trk10−Trk12

ip igmp

e x i t

vlan 30

name ”INFRA”

ip address 1 0 . 1 6 2 . 4 8 . 4 2 5 5 . 2 5 5 . 2 5 2 . 0

tagged Trk10−Trk12

ip igmp

e x i t

vlan 40

name ”VM”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 2 . 4 2 5 5 . 2 5 5 . 2 5 2 . 0

tagged Trk10−Trk12

ip igmp

e x i t

vlan 50

name ”GW”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 6 . 4 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged Trk10−Trk12

ip igmp

e x i t

vlan 60

name ”LOGIN−PROD”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 7 . 4 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged Trk10−Trk12

ip igmp

e x i t

vlan 70

name ”LOGIN−DEV”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

82

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 8 . 4 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged Trk10−Trk12

ip igmp

e x i t

vlan 80

name ”SWITCH−MGMT”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 6 0 . 4 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged 7−48,Trk10−Trk12

ip igmp

e x i t

vlan 90

name ”MGMT”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 6 4 . 4 2 5 5 . 2 5 5 . 2 2 4 . 0

tagged 7−48,Trk10−Trk12

ip igmp

e x i t

vlan 100

name ”ADMIN”

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 1

ip he lper−address 1 0 . 1 6 2 . 4 8 . 1 2

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 0 6666

ip forward−pro to co l udp 1 0 . 1 6 2 . 4 8 . 3 1 6666

ip address 1 0 . 1 6 2 . 5 9 . 4 2 5 5 . 2 5 5 . 2 5 5 . 0

tagged Trk10−Trk12

ip igmp

e x i t

vlan 200

name ”TEMP”

tagged Trk10−Trk12

no ip address

e x i t

t imesync sntp

sntp un i ca s t

sntp 30

sntp s e r v e r p r i o r i t y 1 1 0 . 1 6 2 . 5 0 . 7 0

ip dns domain−name ” i n t e r n a l ”

83

A. SCRIPTS & CONFIG

ip dns se rver−address p r i o r i t y 1 1 0 . 1 6 2 . 4 8 . 1 1

ip dns se rver−address p r i o r i t y 2 1 0 . 1 6 2 . 4 8 . 1 2

ip route 0 . 0 . 0 . 0 0 . 0 . 0 . 0 1 0 . 1 6 2 . 5 6 . 1 1 d i s t ance 30

ip route 1 0 . 1 6 2 . 0 . 0 2 5 5 . 2 5 5 . 2 2 4 . 0 r e j e c t d i s t anc e 30

ip router−id 1 0 . 1 6 2 . 6 0 . 2 5 1

ip mult i cas t−rout ing

route r o sp f

area backbone

e x i t

route r pim

e x i t

route r vrrp

i n t e r f a c e loopback 0

ip address 1 0 . 1 6 2 . 6 0 . 2 5 1

e x i t

snmp−s e r v e r community ” pub l i c ”

spanning−t r e e

spanning−t r e e Trk10 path−co s t 10000

spanning−t r e e Trk10 p r i o r i t y 4

spanning−t r e e Trk11 path−co s t 10000

spanning−t r e e Trk11 p r i o r i t y 4

spanning−t r e e Trk12 path−co s t 10000

spanning−t r e e Trk12 p r i o r i t y 4

vlan 5

ip osp f 1 0 . 1 6 2 . 6 1 . 4 area backbone

ip osp f 1 0 . 1 6 2 . 6 1 . 4 p r i o r i t y 4

vrrp vr id 5

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 1 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 200

enable

e x i t

e x i t

vlan 10

ip osp f 1 0 . 1 6 2 . 3 2 . 4 area backbone

ip osp f 1 0 . 1 6 2 . 3 2 . 4 p r i o r i t y 4

vrrp vr id 10

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 3 2 . 1 2 5 5 . 2 5 5 . 2 4 8 . 0

p r i o r i t y 200

enable

e x i t

e x i t

vlan 20

ip osp f 1 0 . 1 6 2 . 4 0 . 4 area backbone

84

ip o sp f 1 0 . 1 6 2 . 4 0 . 4 p r i o r i t y 4

vrrp vr id 20

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 4 0 . 1 2 5 5 . 2 5 5 . 2 4 8 . 0

p r i o r i t y 200

enable

e x i t

e x i t

vlan 30

ip osp f 1 0 . 1 6 2 . 4 8 . 4 area backbone

ip osp f 1 0 . 1 6 2 . 4 8 . 4 p r i o r i t y 4

vrrp vr id 30

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 4 8 . 1 2 5 5 . 2 5 5 . 2 5 2 . 0

p r i o r i t y 200

enable

e x i t

e x i t

vlan 40

ip osp f 1 0 . 1 6 2 . 5 2 . 4 area backbone

ip osp f 1 0 . 1 6 2 . 5 2 . 4 p r i o r i t y 4

vrrp vr id 40

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 2 . 1 2 5 5 . 2 5 5 . 2 5 2 . 0

p r i o r i t y 200

enable

e x i t

e x i t

vlan 50

ip osp f 1 0 . 1 6 2 . 5 6 . 4 area backbone

ip osp f 1 0 . 1 6 2 . 5 6 . 4 p r i o r i t y 4

vrrp vr id 50

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 6 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 200

enable

e x i t

e x i t

vlan 60

ip osp f 1 0 . 1 6 2 . 5 7 . 4 area backbone

ip osp f 1 0 . 1 6 2 . 5 7 . 4 p r i o r i t y 4

vrrp vr id 60

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 7 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 200

85

A. SCRIPTS & CONFIG

enable

e x i t

e x i t

vlan 70

ip osp f 1 0 . 1 6 2 . 5 8 . 4 area backbone

ip osp f 1 0 . 1 6 2 . 5 8 . 4 p r i o r i t y 4

vrrp vr id 70

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 8 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 200

enable

e x i t

e x i t

vlan 80

ip osp f 1 0 . 1 6 2 . 6 0 . 4 area backbone

ip osp f 1 0 . 1 6 2 . 6 0 . 4 p r i o r i t y 4

vrrp vr id 80

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 0 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 200

enable

e x i t

e x i t

vlan 90

ip osp f 1 0 . 1 6 2 . 6 4 . 4 area backbone

ip osp f 1 0 . 1 6 2 . 6 4 . 4 p r i o r i t y 4

vrrp vr id 90

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 6 4 . 1 2 5 5 . 2 5 5 . 2 2 4 . 0

p r i o r i t y 200

enable

e x i t

e x i t

vlan 100

ip osp f 1 0 . 1 6 2 . 5 9 . 4 area backbone

ip osp f 1 0 . 1 6 2 . 5 9 . 4 p r i o r i t y 4

vrrp vr id 100

backup

v i r t u a l−ip−address 1 0 . 1 6 2 . 5 9 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0

p r i o r i t y 200

enable

e x i t

e x i t

Listing A.5: Current sw-mgmt config - This is the current configuration of sw-mgmt.

86

	List of Figures
	List of Tables
	List of Listings
	Glossary
	1 Summary
	2 Introduction
	2.1 People
	2.2 Company
	2.2.1 ALICE
	2.2.2 HLT

	2.3 The problem
	2.4 Current setup
	2.5 The company's main goals

	3 Task definition
	3.1 Requirements
	3.2 Conditions
	3.3 Hardware & software
	3.3.1 Switches
	3.3.1.1 HP ProCurve 3400cl (J4905A)
	3.3.1.2 HP ProCurve 3400cl (J4906A)
	3.3.1.3 HP ProCurve 3500yl-48G (J8693A)
	3.3.1.4 Netgear FSM726 v2

	3.3.2 Software

	3.4 Purchase
	3.5 Timeframe
	3.5.1 Milestones
	3.5.1.1 Planning
	3.5.1.2 Physical
	3.5.1.3 Logical
	3.5.1.4 Monitoring
	3.5.1.5 Documentation

	3.6 Risks
	3.7 Main goals
	3.7.1 Physical movement
	3.7.2 Redundancy & availability
	3.7.3 IP-scheme
	3.7.4 Security
	3.7.5 Separation
	3.7.6 Avoid loops
	3.7.7 Network-services

	4 Design
	4.1 Physical
	4.1.1 Switches
	4.1.2 Cables
	4.1.3 Servers

	4.2 Logical
	4.2.1 IP-scheme
	4.2.2 VLANs

	4.3 Network-services
	4.3.1 DNS
	4.3.2 DHCP
	4.3.3 Gateway

	5 Implementation
	5.1 Physical
	5.2 Switch configuration
	5.2.1 Initial config
	5.2.2 Remove temporary switches
	5.2.3 Advanced switch config
	5.2.3.1 STP
	5.2.3.2 Routing
	5.2.3.3 OSPF
	5.2.3.4 VRRP
	5.2.3.5 ip helper-address
	5.2.3.6 ip forward-protocol

	5.2.4 Final switch-configs

	5.3 DNS & DHCP
	5.3.1 Preparation
	5.3.2 Final config

	5.4 Gateway
	5.4.1 Initial network-config
	5.4.2 CARP
	5.4.3 PF

	5.5 The switchover

	6 Testing
	6.1 Network-connectivity
	6.2 Network-services
	6.2.1 DHCP
	6.2.2 DNS
	6.2.3 Gateways

	6.3 Redundancy
	6.3.1 Edge-switches
	6.3.2 Core-swithces & gateways
	6.3.3 Network-services

	7 Conclusion
	7.1 Fulfilled requirements
	7.2 Limitations
	7.3 Improvements
	7.4 Progress according to plan

	References
	A Scripts & config

